Lesson Plan

TeacherDr. Kuntal.................
Class ...B.Sc. Honours 1st.............. Sec
ec.
Subject ...Regression Analysis.....Session2023-24(2 ${ }^{\text {nd }}$ sem.)...

Week(Feb.)	Topics
$1(14-17)$	Introduction of linear regression Principal of least square and fitting of straight line, properties of regression coefficients, Derivative of two lines of regression
$2(19-24)$	Standard error of estimate obtained from regression lines, correlation coefficients between observed and estimated values, angle between two lines of regression, difference between correlation and regression.
$3(26-29)$	Curvilinear regression, fitting of curves.Test

Week(March)	Topics
$1(1-2)$	Basic concepts of Probability, Mathematical Probability, Statistical Probability and examples
$2(4-9)$	Subjective Probability and examples, Sets, Axiomatic Approach to Probability
$3(11-16)$	Addition Theorem of probability, Boole's inequality, Conditional probability, Multiplication theorems of probability and examples
$4(18-23)$	Bayes theorem and its application, Random variable and probability functions, defination and properties of random variable, Test, Assignment of $1^{\text {st }}$ unit
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	discrete and continuous random variable, probability mass and density functions, distribution functions
$2(8-13)$	Concepts of bivariate random variable
$3(15-20)$	Joint marginal and conditional distributions
$4(22-27)$	Mathematical expectation moments measure of location, dispersion, skewness and kurtosis, Test
$5(29-30)$	revision

Lesson Plan

Teacher \qquad Dr. Kuntal. \qquad
Class- Maths honours 1st........ Sec.
Subject -Number Theory \& Trigonmetry, Session2023-24(2 ${ }^{\text {nd }}$ sem.)......

Week(Feb.)	Topics
$1(14-17)$	Unit 1:Number Theory: Divisibility, G.C.D., L.C.M., Primes, fundamental theorem of arithmetic.
$2(19-24)$	Linear congruences, fermat's theorem, Wilson's theorem ant its converse
$3(26-29)$	Linear diphantine equation in two variables, test

Week(March)	Topics
$1(1-2)$	Unit 2:Complete residue system, reduced residue system module m
$2(4-9)$	Euler's function, euler's generalization of fermat's theorem, Chinese remainder theorem, quadratic residues, legendre symbols, lemma of gauss, gauss reciprocity law, greatest integer function[X], Test
$3(11-16)$	The number of divisors and the sum of divisors of a natural number n, moebius function and moebius inversion formula
$4(18-23)$	Unit 3: De moivre's theorem and its applications, expension of trigonometrical function, Assignment of unit 1
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Direct circular and hyperbolic function and their properties, test
$2(8-13)$	Unit 4: inverse circular and hyperbolic functions and their properties
$3(15-20)$	Logarithm of a complex quantity
$4(22-27)$	Gregory's series, summation of trigonometry series.
$5(29-30)$	revision

Lesson Plan

TeacherDr. Kuntal.................
Class ...B.Sc. Honours III............... Sec. \qquad
SubjectFluid Daynamics........Session2023-24(6 ${ }^{\text {th }}$ sem.)......

Week(Feb. $)$	Topics
$1(6-10)$	Unit:1 Kinematics- Eulerian and langrangian methods, stream lines
$2(12-17)$	path lines and streak lines, Velocity potential, irrotational and rotational motion, vortex lines
$3(19-24)$	equations of continuity and its examples
$4(26-29)$	boundary surfaces and its examples, Test

Week(March)	Topics
$1(1-2)$	Unit-2: Acceleration at a point of a fluid,
$2(4-9)$	components of acceleration in cylindrical and spherical polar coordinates, pressure at a point of a moving fluid, euler's and legrange's equation of motion, Test
$3(11-16)$	bernoulli's equation, impulsive motion, stream function
$4(18-23)$	Unit-3: acyclic and cyclic irrotation motions, kinetic energy of irrotational flow, Assignment of unit 1
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	kalvin's minimum energy theorem, axially symmetric flows liquid streaming passed a fixed sphere, motion of a sphere through a liquid at rest at infinity
$2(8-13)$	Equation of motion of a sphere, three dimensional sources , sinks , doublets and their images, stokes stream function
$3(15-20)$	Unit-4: irrotational motion in two dimension, complex velocity potential , milne thomson theorem,
$4(22-27)$	blasius theorem and its applications and examples.Test
$5(29-30)$	Revision

Lesson Plan

Teacher ...Dr. Kuntal....................
Class ...B.sc. IV Sem............... Sec. \qquad
Subject \qquad .SEC. Logic and Sets. \qquad Session ...2023-24. \qquad

Week(Feb.)	Topics
$1(06-08)$	Unit-1: Introduction, propositions, truth table, negation
$2(12-15)$	conjuction and disconjuction, implications, bi-conditional propositions, converse
$3(19-22)$	contrapositive, and inverse propositions, and precedence of logical operators.Test
$4(26-29)$	Unit-2: propositional equivalence: logical equivalence

Week(March)	Topics
$1(4-7)$	predicates and quantifiers, introduction quantifiers
$2(11-14)$	binding variables and negations.
$3(18-21)$	Unit-3:Sets, Subsets, Set operations, the laws of set theory, and venn diagram, Assignment of unit 1
$4(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-4)$	Examples of finite and infinite sets, finite sets and counting principle, Test.
$2(8-11)$	Empty set, properties of empty set, Standard set operations, classes of set, power set
$3(15-18)$	Unit-4: Difference and Symmetric difference of two sets, set identifies, generalized union and intersection.Test
$4(22-25)$	Relation and its properties, Test
$5(29-30)$	Revision

Teacher \qquad
\qquad
Class ...B.Sc. Honours III. Sec. \qquad
Subject \qquad Dynamics \qquad Session 2023-24 ($6^{\text {th }} \mathrm{Sem}$)......

Week(Feb.)	Topics
$1(6-10)$	Chapter 1: Introduction of motion along a plane curve, Radial and transverse velocities and acceleration, Tangential and normal velocities and acceleration.
$2(12-17)$	Chapter 2: introduction of relative motion
$3(19-24)$	Chapter 3: introduction of SHM
$4(26-29)$	Chapter 4: introduction of elastic string, Test

Week(March)	Topics
$1(1-2)$	Chaptor 5: Introduction of Newton's law of motion
$2(4-9)$	Continue.....Chaptor 5: Introduction of Newton's law of motion
$3(11-16)$	Chaptor 6: introduction of work, Introduction of power, Introduction of energy
$4(18-23)$	Chapter 7: motion of a particle on smooth and rough plane curves, Motion on the outside of a vertical circle, Motion on the inside of a vertical circle, Cylindrical motion, Motion on a rough curve under gravity, Assignment of Chapter 1,2.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
1(1-6)	Chaptor 8: introduction of projectiles, Velocity at any point of the trajectory, Directions of projection for a particle to hit a given point, Range and time of flight, directions, and velocity, Test
$2(8-13)$	Chapter 9: introduction of central orbits, Areal velocity, elliptic orbit, hyperbolic orbits, Velocity in a curves, Apse and apsidal distances
$3(15-20)$	Chapter 10: introduction of kepler's law,
$4(22-27)$	Chapter 11: Motion of particle in three dimension, velocity and acc. Of moving axis
$5(29-30)$	Revision and Test

Teacher \qquad
\qquad
Class \qquad Sec. ...A(1-3)+B(4-6).................

Subject-Special Function and Integral Transforms..Session-2023-24(6 Sem.)

Week(Feb.)	Topics
$1(6-10)$	Chapter 1: Power Series
$2(12-17)$	Continue....Chapter 1: Power Series
$3(19-24)$	Chapter 2: Bessel's equations and functions
$4(26-29)$	Continue...Chapter 2: Bessel's equations and functions, Test

Week(March)	Topics
$1(1-2)$	Chapter 3: Legendre's equations
$2(4-9)$	Chapter 5: Laplace transforms
$3(11-16)$	Chapter 6:Inverse Laplace transforms
$4(18-23)$	Chapter 7: Use of Laplace transforms in integral equations Assignment of chapter 1.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Chapter8: Solution of differential equation by laplace transformation, Test
$2(8-13)$	Chapter 9: Fourier transforms
$3(15-20)$	Continue.... Chapter 9: Fourier transforms
$4(22-27)$	Chapter10: Solution of differential equation by Fourier transforms
$5(29-30)$	Revision , Test

Teacher \qquad
\qquad
Class B.Sc.II Honours. Sec. \qquad
Subject-Special Function and Integral Transforms..Session-2023-24(4 Sem.)

Week(Feb. $)$	Topics
$1(6-10)$	Chapter 1: Power Series
$2(12-17)$	Continue.....Chapter 1: Power Series
$3(19-24)$	Chapter 2: Bessel's equations and functions
$4(26-29)$	Chapter 3: Legendre's equations

Week(March)	Topics
$1(1-2)$	Chapter 4: Hermite's equations
$2(4-9)$	Chapter 5: Laplace transforms
$3(11-16)$	Chapter 6:Inverse Laplace transforms
$4(18-23)$	Chapter 7: Use of Laplace transforms in integral equations Assignment of chapter 1.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Chapter8: Solution of differential equation by laplace transformation, Test
$2(8-13)$	Chapter 9: Fourier transforms
$3(15-20)$	Continue.... Chapter 9: Fourier transforms
$4(22-27)$	Chapter10: Solution of differential equation by Fourier transforms
$5(29-30)$	Revision , Test

Lesson Plan

Teacher \qquad .Dr. Sunita

Class \qquad B.Sc.III Honours \qquad Sec. \qquad
Subject \qquad Elementry Topology...Session \qquad 2023-24.

Week(Feb.)	Topics
$1(6-10)$	Unit1: Definition and examples of topological spaces. Comparison of topologies on a set, Intersection and union of topologies on a set.
$2(12-17)$	Neighbourhoods, Interior point and interior of a set, Closed set as a complement of an open set, Adherent point and limit point of a set,
$3(19-24)$	Closure of a set, Derived set, Properties of Closure operator, Boundary of a set, Dense subsets, Interior,
$4(26-29)$	Exterior and boundary operators. Alternative methods of defining a topology in terms of neighbourhood system and Kuratowski closure operator.Test

Week(March)	Topics
$1(1-2)$	Unit 2:Relative(Induced) topology, Base and subbase for a topology, Base for Neighbourhood system.
$2(4-9)$	Continuous functions, Open and closed functions, Homeomorphism. Connectedness and its characterization,
$3(11-16)$	Connected subsets and their properties, Continuity and connectedness, Components, Locally connected spaces.
$4(18-23)$	Unit 3:Compact spaces and subsets, Compactness in terms of finite intersection property,Continuity and compact sets, Basic properties of compactness, Assignment
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Closedness of compactsubset and a continuous map from compact space into a Hausdorff and its consequence. Test
$2(8-13)$	Sequentially and countably compact sets, Local compactness and one point compatification
$3(15-20)$	Unit 4:First countable, second countable and separable spaces, hereditary and topological property, Countability of a collection of disjoint open sets in separable and second countable spaces,
$4(22-27)$	Lindelof theorem. T0, T1, T2 (Hausdorff) separation axioms,their characterization and basic properties.
$5(29-30)$	Revision and Test

Teacher ...Punita(1-3) and ...Sunita(4-6).................
Class B.Sc II Honours
Sec. \qquad
Subject - Hydrostatics... ..Session 2023-24 (4 th sem) \qquad

Week(Feb.)	Topics
$1(6-10)$	Pressure equation. Condition of equilibrium. Lines of force
$2(12-17)$	Homogeneous and heterogeneous fluids,Elastic fluids.
$3(19-24)$	Surface of equal pressure.
$4(26-29)$	Fluid at rest under action of gravity. Rotating fluids. Test

Week(March)	Topics
$1(1-2)$	Fluid pressure on plane surfaces. Centre of pressure. Resultant pressure on curved surfaces..
$2(4-9)$	Equilibrium of floating bodies
$3(11-16)$	Curves of buoyancy. Surface of buoyancy
$4(18-23)$	Stability of equilibrium of floating bodies. Metacentre. Work done in producing a displacement. Assignment
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Vessels containing liquid,Test
$2(8-13)$	Stability of equilibrium of floating bodie, Metacentre.
$3(15-20)$	Work done in producing a displacement.
$4(22-27)$	Vessels containing liquid
$5(29-30)$	Revision and Test

Teacher: Savita Sharma \qquad
Class: B. Sc. $2^{\text {nd }} \ldots \ldots$. Sec:....A+B.....
Subject: Mechanics.....Session:2023-24......

Week(Feb.)	Topics(Statics)
$1(6-10)$	Chapter 1: Forces acting at a point
$2(12-17)$	Chapter 1: Forces acting at a point
$3(19-24)$	Chapter 2: Parallel forces
$4(26-29)$	Chapter 3: Moments

Week(March)	Topics
$1(1-2)$	Chapter 4: Couples, Test
$2(4-9)$	Chapter5: Analytical conditions of equilibrium of coplanar forces
$3(11-16)$	(Dynamics) Chapter 1: Motion along a plane curve
$4(18-23)$	Chapter 2: Relative motion, Assignment
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Chapter 3: simple harmonic motion, Test
$2(8-13)$	Chapter 4: Elastic string
$3(15-20)$	Chapter 5: Newton's law of motion
$4(22-27)$	Chapter 6: work, power and energy
$5(29-30)$	Revision

Lesson Plan
Teacher- SAVITA SHARMA
Class - B.A $3^{\text {rd }} \ldots \ldots$. Days-(1-3 days)
Subject- Advanced calculus Session - 2023-24

Week(Feb.)	Topics
$1(5-7)$	UNIT -1: Uniform continuity, chain rule of differentiability, mean value theorem, rolle's theorem
$2(12-14)$	Lagrange's mean value theorem and their geometrical interpretations, taylor's theorem with various forms of remainders
$3(19-21)$	indeterminate forms , taylor's theorem with various forms of remainders
$4(26-28)$	Darboux intermediate value theorem for derivatives

Week(March)	Topics
$1(4-6)$	UNIT-2 : Limit and continuity of real valued functions of two variables. Partial differentiation
$2(11-13)$	Total differentiation; complete functions and implicit function. change of variables. Homogeneous functions and euler's theorem of homogeneous functions
$3(18-20)$	Revision and test of unit $1 \& 2$
$4(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-3)$	UNIT-3: Taylor's theorem for functions of two variables. Differentiability of real valued functions of two variables. Schwarz and young's theorem
$2(8-10)$	Implicit function theorem . maxima, minima and saddle point of two variables
$3(15-17)$	UNIT-4: Lagrange's method of multipliers . jacobian, differentiation under integral sign
$4(22-24)$	Application of triple integrals, change of variable in double and triple integrals.
$5(29-30)$	Test and assignment of unit 3\& 4

Lesson Plan

Teacher: Sativa Sharma
Class: Bsc $2^{\text {nd }}$ (honours) Sem: 4th
Subject : Elementry Inference Session: 2023-24

Week(Feb.)	Topics
$1(6-10)$	UNIT-1:Parameter and statistic, sampling distribution and standard error of estimate
$2(12-17)$	Point and interval estimation, unbiasedness, efficiency and related examples
$3(19-24)$	Consistency, sufficiency and related examples
$4(26-29)$	UNIT-2:Method of maximum likelihood estimation and its examples, Test

Week(March)	Topics
$1(1-2)$	Null and alternative hypotheses, simple and composite hypotheses
$2(4-9)$	Critical region, level of significance, one tailed and two tailed test, types of error, Power of test, steps in solving testing of hypotheses problem
$3(11-16)$	Most powerful test and uniformly most powerful test, Neyman- Pearson lemma, unbiased test and unbiased critical region and its examples
$4(18-23)$	UNIT-3:Testing of significance, error in sampling, critical values, procedure for testing of hypothesis, sampling of attributes, test of significance for single proportion and its examples
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Test of significance for single mean and difference of means and its examples, Test and Assignment
$2(8-13)$	UNIT -4: Definition of chi-square test and its properties, definition of student's 't' and snedcor's F-statistics,
$3(15-20)$	Testing for the mean and variance of univariate normal distributions
$4(22-27)$	Related confidence intervals, analysis of variance for one way and two way classified data
$5(29-30)$	Revision

Lesson Plan
Teacher - Dr. KUSUM
Class- B.Sc $3^{\text {rd }} \ldots \ldots .$. . Sec $-C+D$
Subject - Advance calculus... Session - 2023-24...

Week(Feb.)	Topics
$1(8-10)$	UNIT -1: Uniform continuity, chain rule of differentiability, mean value theorem, rolle's theorem
$2(15-17)$	Lagrange's mean value theorem and their geometrical interpretations, taylor's theorem with various forms of remainders
$3(29)$	Darboux intermediate value theorem for derivatives, indeterminate forms

Week(March)	Topics
$1(1-2)$	UNIT-2 : Limit and continuity of real valued functions of two variables. Partial differentiation
$2(7-9)$	Total differentiation; complete functions and implicit function. change of variables. Homogeneous functions and euler's theorem of homogeneous functions
$3(14-16)$	Revision and test of unit $1 \& 2$
$4(21-23)$	UNIT-3: Taylor's theorem for functions of two variables. Differentiability of real valued functions of two variables. Schwarz and young's theorem
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(4-6)$	Implicit function theorem . maxima, minima and saddle point of two variables
$2(11-13)$	UNIT-4: Lagrange's method of multipliers . jacobian, differentiation under integral sign
$3(18-20)$	Application of triple integrals , change of variable in double and triple integrals.
$4(25-27)$	Test and assignment of unit 3\& 4

Lesson Plan

Teacher : Dr. Kusum \qquad
Class: B.sc $3^{\text {rd }}$
Sem: 6th \qquad
Subject : SEC(Transportation and game theory)... Session: 2023-24

Week(Feb.)	Topics
$1(6-8)$	UNIT-1: Transportation problem
$2(12-15)$	Mathematical formulations: Transportation problem
$3(19-22)$	Northwest corner method
$4(26-29)$	Least cost method

Week(March)	Topics
$1(4-7)$	UNIT-2: Vogel approximation method for determination of starting basic solution Examples of vogel method
$2(11-14)$	Revision of unit1 and unit 2 and test and assignment
$3(18-21)$	UNIT-3 : Algorithm for solving transportation problem, assignment problem and its mathematical formulation
$4(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-4)$	Hungarian method for solving assignment problem
$2(8-11)$	UNIT-4: Game theory: formulation of two person zero sum games,
$3(15-18)$	Solving two person zero sum games
$4(22-25)$	Graphical solution procedure
$5(29-30)$	Test and assignment

Teacher ...Dr. Punita

Class \qquad B.Sc. 1st \qquad Sec. \qquad $A+B+C \ldots \ldots \ldots$

Subject \ldots. . Number Theory......Session2023-24(2 $2^{\text {nd }}$ sem.)......

Week(Feb.)	Topics
$1(19-24)$	Unit 1:Number Theory: Divisibility, G.C.D., L.C.M., Primes, fundamental theorem of arithmetic. Linear congruences, fermat's theorem, Wilson's theorem ant its converse
$2(26-29)$	Linear diphantine equation in two variables, test

Week(March)	Topics
$1(1-2)$	Unit 2:Complete residue system, reduced residue system module m
$2(4-9)$	Euler's function, euler's generalization of fermat's theorem, Chinese remainder theorem, quadratic residues, legendre symbols, lemma of gauss, gauss reciprocity law, greatest integer function[X], Test
$3(11-16)$	The number of divisors and the sum of divisors of a natural number n, moebius function and moebius inversion formula
$4(18-23)$	Unit 3: De moivre's theorem and its applications, expension of trigonometrical function, Assignment of unit 1
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Direct circular and hyperbolic function and their properties, test
$2(8-13)$	Unit 4: inverse circular and hyperbolic functions and their properties
$3(15-20)$	Logarithm of a complex quantity
$4(22-27)$	Gregory's series, summation of trigonometry series.
$5(29-30)$	revision

Teacher ...Punita(1-3) and ...Sunita(4-6).................
Class B.Sc II Honours
Sec. \qquad
Subject - Hydrostatics... ..Session 2023-24 (4 th sem) \qquad

Week(Feb. $)$	Topics
$1(6-10)$	Pressure equation. Condition of equilibrium. Lines of force
$2(12-17)$	Homogeneous and heterogeneous fluids,Elastic fluids.
$3(19-24)$	Surface of equal pressure.
$4(26-29)$	Fluid at rest under action of gravity. Rotating fluids. Test

Week(March)	Topics
$1(1-2)$	Fluid pressure on plane surfaces. Centre of pressure. Resultant pressure on curved surfaces..
$2(4-9)$	Equilibrium of floating bodies
$3(11-16)$	Curves of buoyancy. Surface of buoyancy
$4(18-23)$	Stability of equilibrium of floating bodies. Metacentre. Work done in producing a displacement. Assignment
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Vessels containing liquid,Test
$2(8-13)$	Stability of equilibrium of floating bodie, Metacentre.
$3(15-20)$	Work done in producing a displacement.
$4(22-27)$	Vessels containing liquid
$5(29-30)$	Revision and Test

Lesson Plan

Teacher ...Dr. Vikas \qquad
Class ...B.Sc Physics(H) \qquad Sem . 4th \qquad
Subject ...Mathematics II. \qquad Session -2023-24 \qquad

Week(Feb.)	Topics
$1(6-10)$	Reading and Writing Mathematics: Illustration of mathematical proofs via examples, Illustration of Conjunction, Disjunction
$2(12-17)$	Negation of Statements and Conditional Statements via examples, Functions and Relations
$3(19-24)$	Sets, DeMorgan'sLaws, Relations, Cartesian Products, Functions and Graphical Representation
$4(26-29)$	Injective and Surjective functions, Composition and Inverse of Functions

Week(March)	Topics
$1(1-2)$	Level Sets, Equivalence Relations and Equivalence Classes.
$2(4-9)$	Radial Numbers: Natural Numbers, Algebraic Properties
$3(11-16)$	Mathematical Induction. Real Numbers, Order Properties and Completeness Property of \mathbb{R}. Intervals on \mathbb{R}, Infinity, Infinite Sets and Cardinality.
$4(18-23)$	Revision; test and assignment of above topic.
$5(25-30)$	Holiday of Holi.

Week(April)	Topics
$1(1-6)$	Ionic Sequences: Sequences, Convergence,
$2(8-13)$	Limit Theorems, Divergence, Cauchy Sequences.
$3(15-20)$	Infinite Series: Convergence and Divergence of Series, Geometric Series, Tests for Convergence.
$4(22-27)$	Limits: Limits of Functions, Boundedness, Squeeze Theorem, Limits at Infinity
$5(29-30)$	Revision; test and assignment of above topic.

Lesson Plan

Teacher ...Dr. Vikas \qquad
Class ...B.Sc 1st(H) \qquad Sem. 2nd. \qquad
Subject ...Vector Calculus. \qquad Session -2023-24 \qquad

Week(Feb.)	Topics
$1(6-10)$	UNIT-1: Scalar and vector product of three vectors, product of four vectors.
$2(12-17)$	Reciprocal vectors. Vector differentiation. Scalar Valued point functions, vector valued point functions
$3(19-24)$	Derivative along a curve, directional derivatives
$4(26-29)$	UNIT-2: Character of $Ф$ Gradient of a scalar point function, geometrical interpretation of grad

Week(March)	Topics
$1(1-2)$	Gradient as a point function. Divergence and curl of vector point function, characters of ρ Div f f pand Curl f as point function, examples.
$2(4-9)$	Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator.
$3(11-16)$	Revision; test and assignment of UNIT-1 \& UNIT-2
$4(18-23)$	UNIT-3: Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors
$5(25-30)$	Holiday of Holi.

Week(April)	Topics
$1(1-6)$	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinates.
$2(8-13)$	Cylindrical co-ordinates and Spherical co- ordinates.
$3(15-20)$	UNIT-4: Vector integration; Line integral, Surface integral, Volume integral.
$4(22-27)$	Theorems of Gauss, Green \& Stokes and problems based on these theorms.
$5(29-30)$	Revision; test and assignment of UNIT-3 \& UNIT-4

Lesson Plan

Teacher ...Dr. Vikas. \qquad
Class ...B.Sc $2^{\text {nd }}(H)$ \qquad Sem. 4th. \qquad
Subject ...Sequence \& Series \qquad Session -2023-24

Week(Feb.)	Topics
$1(6-10)$	UNIT-1: Boundedness of the set of real numbers; least upper bound, greatest lower bound of a set, neighborhoods, interior points, isolated points, limit points.
$2(12-17)$	Open sets, closed set, interior of a set, closure of a set in real numbers and their properties.
$3(19-24)$	Bolzano-Weiestrass theorem, Open covers, Compact sets and Heine-Borel Theorem
$4(26-29)$	UNIT-2: Sequence: Real Sequences and their convergence, Theorem on limits of sequence, Bounded and monotonic sequences, Cauchy's sequence, Cauchy general principle of convergence.

Week(March)	Topics
$1(1-2)$	Subsequences, Sub sequential limits. Infinite series: Convergence and divergence of Infinite Series, Comparison Tests of positive terms Infinite series.
$2(4-9)$	Cauchy's general principle of Convergence of series, Convergence and divergence of geometric series, Hyper Harmonic series or p-series.
$3(11-16)$	Revision; test and assignment of above topic.
$4(18-23)$	UNIT-3: Infinite series: D-Alembert's ratio test, Raabe's test, Logarithmic test, de Morgan and Bertrand's test.
$5(25-30)$	Holiday of Holi.

Week(April)	Topics
$1(1-6)$	Cauchy's Nth root test, Gauss Test, Cauchy's integral test, Cauchy's condensation test.
$2(8-13)$	UNIT-4: Alternating series, Leibnitz's test, absolute and conditional convergence, Arbitrary series: abel's lemma, Abel's test, Dirichlet's test
$3(15-20)$	Insertion and removal of parenthesis, re- arrangement of terms in a series, Dirichlet's theorem, Riemann's Re-arrangement theorem, Pringsheim's theorem.
$4(22-27)$	Multiplication of series, Cauchy product of series, (definitions and examples only) Convergence and absolute convergence of infinite products.
$5(29-30)$	Revision; test and assignment of above topic.

Lesson Plan

Teacher \qquad Dr. Neeti

Class \qquad Sec. \qquad
Subject \qquad Group \qquad Session \qquad

Week(Feb.)	Topics
$1(6-10)$	UNIT-1 : Definition of a group with example and simple properties of groups.
$2(12-17)$	Subgroups and Subgroup criteria, Generation of groups, cyclic groups, Cosets.
$3(19-24)$	Left and right cosets, Index of a sub-group Coset decomposition.
$4(26-29)$	Largrage's theorem and its consequences, Normal subgroups, Quotient groups.

Week(March)	Topics
$1(1-2)$	UNIT- $2:$ Homoomorphisms, isomophisms, automorphisms and inner automorphisms of a group.
$2(4-9)$	Automorphisms of cyclic groups, Permutations groups. Even and odd permutations. Alternating groups, Cayley's theorem, Center of a group and derived group of a group.
$3(11-16)$	UNIT -3 : Introduction to rings, subrings, integral domains and fields.
$4(18-23)$	Characteristics of a ring. Ring homomorphisms.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	ideals (principle, prime and Maximal) and Quotient rings, Field of quotients of an integral domain.
$2(8-13)$	UNIT 4 : Euclidean rings, Polynomial rings, Polynomials over the rational field, The Eisenstein's criterion.
$3(15-20)$	Polynomial rings over commutative rings, Unique factorization domain, R unique factorization domain implies so is R[X1, X2,.....Xn].
$4(22-27)$	REVISION
$5(29-30)$	TEST

Lesson Plan

Teacher \qquad Dr. Kulvir \qquad
ClassB.sc $3^{\text {rd }}$ year Hons
Subject ...Linear Algebra
Session \qquad

Week(Feb.)	Topics
$1(6-10)$	UNIT -1 : Vector spaces, subspaces, Sum and Direct sum of subspaces, Linear span, Linearly Independent and dependent subsets of a vector space.
$2(12-17)$	Finitely generated vector space, Existence theorem for basis of a finitely generated vector space.
$3(19-24)$	Finite dimensional vector spaces, Invariance of the number of elements of bases sets.
$4(26-29)$	Dimensions, Quotient space and its dimension.

Week(March)	Topics
$1(1-2)$	UNIT -2: Homomorphism and isomorphism of vector spaces, Linear transformations and linear forms on vector spaces.
$2(4-9)$	Vector space of all the linear transformations Dual Spaces, Bidual spaces, annihilator of subspaces of finite dimentional vector spaces.
$3(11-16)$	Null Space, Range space of a linear transformation, Rank and Nullity Theorem.
$4(18-23)$	UNIT -3: Algebra of Liner Transformation, Minimal Polynomial of a linear transformation, Singular and non-singular linear transformations.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Matrix of a linear Transformation, Change of basis, Eigen values and Eigen vectors of linear transformations.
$2(8-13)$	UNIT -4: Inner product spaces, Cauchy-Schwarz inequality.
$3(15-20)$	Orthogonal sets and Basis, Bessel's inequality for finite dimensional vector spaces, Gram-Schmidt, Orthogonalization process.
$4(22-27)$	Adjoint of a linear transformation and its properties, Unitary linear transformations.
$5(29-30)$	REVISION

Lesson Plan

Teacher \qquad Dr. Neeti

Class \qquad
\qquad Sec. \qquad
Subject \qquad Group and Ring \qquad Session ...2023-24 even sem.

Week(Feb.)	Topics
$1(6-10)$	UNIT-1 : Definition of a group with example and simple properties of groups.
$2(12-17)$	Subgroups and Subgroup criteria, Generation of groups, cyclic groups, Cosets.
$3(19-24)$	Left and right cosets, Index of a sub-group Coset decomposition.
$4(26-29)$	Largrage's theorem and its consequences, Normal subgroups, Quotient groups.

Week(March)	Topics
$1(1-2)$	UNIT- $2:$ Homoomorphisms, isomophisms, automorphisms and inner automorphisms of a group.
$2(4-9)$	Automorphisms of cyclic groups, Permutations groups. Even and odd permutations. Alternating groups, Cayley's theorem, Center of a group and derived group of a group.
$3(11-16)$	UNIT -3: Introduction to rings, subrings, integral domains and fields.
$4(18-23)$	Characteristics of a ring. Ring homomorphisms.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	ideals (principle, prime and Maximal) and Quotient rings, Field of quotients of an integral domain.
$2(8-13)$	UNIT 4 : Euclidean rings, Polynomial rings, Polynomials over the rational field, The Eisenstein's criterion.
$3(15-20)$	Polynomial rings over commutative rings, Unique factorization domain, R unique factorization domain implies so is R[X1, X2,.....Xn].
$4(22-27)$	REVISION
$5(29-30)$	TEST

Lesson Plan

Teacher ...Dr. Neeti. \qquad
ClassB.A (2 ${ }^{\text {nd }}$ year)........... Sec. \qquad
Subject \qquad Mechanics. \qquad Session \qquad 2023-24......

Week(Feb. $)$	Topics(Statics)
$1(6-10)$	Chapter 1: Forces acting at a point
$2(12-17)$	Chapter 1: Forces acting at a point
$3(19-24)$	Chapter 2 : Parallel forces
$4(26-29)$	Chapter 3: Moments

Week(March)	Topics
$1(1-2)$	Chapter 4: Couples, Test
$2(4-9)$	Chapter5: Analytical conditions of equilibrium of coplanar forces
$3(11-16)$	(Dynamics) Chapter 1: Motion along a plane curve
$4(18-23)$	Chapter 2: Relative motion, Assignment
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Chapter 3: simple harmonic motion, Test
$2(8-13)$	Chapter 4: Elastic string
$3(15-20)$	Chapter 5: Newton's law of motion
$4(22-27)$	Chapter 6: work, power and energy
$5(29-30)$	Revision

Lesson Plan

TeacherDr. Neeti. \qquad
Class \qquad
\qquad
\qquad Sec. \qquad B+C........

Subject ...Vector Calculus. \qquad Session \qquad 2023-24...

Week(Feb.)	Topics
$1(6-10)$	UNIT 1:- Gradient of a scalar point function, geometrical interpretation of grad gradient as a point function
$2(12-17)$	Divergence and curl of vector point function, characters of ρ Div f pand Curl f as point function, examples.
$3(19-24)$	Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator.
$4(26-29)$	UNIT 2:- Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors.

Week(March)	Topics
$1(1-2)$	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinates, Cylindrical co-ordinates and Spherical co- ordinates.
$2(4-9)$	UNIT 3 :- Vector integration; Line integral, Surface integral, Volume integral.
$3(11-16)$	Theorems of Gauss, Green \& Stokes and problems based on these theorems.
$4(18-23)$	UNIT 4:- General equation of second degree.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Tangent at any point to the conic.
$2(8-13)$	chord of contact.
$3(15-20)$	pole of line to the conic, director circle of conic.
$4(22-27)$	REVISION
$5(29-30)$	TEST

Lesson Plan

Teacher \qquad .Neeti. \qquad
Class ...B.SC Hons \qquad
Subject ...Ordinary differential equation
Session ...2023-24

Week(Feb.)	Topics
$1(6-10)$	UNIT 1 :-Geometrical meaning of a differential equation.
$2(12-17)$	Exact differential equations, integrating factors.

Week(March)	Topics
$1(1-2)$	UNIT 2 :-Orthogonal trajectories: in Cartesian coordinates and polar coordinates.
$2(4-9)$	Self orthogonal family of curves.. Linear differential equations with constant coefficients.
$3(11-16)$	Homogeneous linear ordinary differential equations. Equations reducible to homogeneous.
$4(18-23)$	UNIT 3 :- Linear differential equations of second order: Reduction to normal form.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Transformation of the equation by changing the dependent variable/ the independent variable. Solution by operators of non-homogeneous linear differential equations.
$2(8-13)$	Reduction of order of a differential equation. Method of variations of parameters. Method of undetermined coefficients.
$3(15-20)$	UNIT 4 :-Ordinary simultaneous differential equations. Solution of simultaneous differential equations involving operators $x(d / d x)$ or $\mathrm{t}(\mathrm{d} / \mathrm{dt})$ etc.
$4(22-27)$	Simultaneous equation of the form dx/P $=\mathrm{dy} / \mathrm{Q}=\mathrm{dz} / \mathrm{R}$. Total differential equations. Condition for Pdx $+\mathrm{Qdy}+\mathrm{Rdz}=0$ to be exact. General method of solving Pdx $+\mathrm{Qdy}+\mathrm{Rdz}=0$ by taking one variable constant. Method of auxiliary equations.
$5(29-30)$	REVISION

Lesson Plan

Teacher ...Neeti.................
Class ...B.SC Hons \qquad
SubjectOperation research 2
Session2023-24......

Week(Feb.)	Topics
$1(6-10)$	UNIT 1 :-Inventory Control: introduction of inventory, factors affecting inventory.
$2(12-17)$	Inventory models, Deterministic models.
$3(19-24)$	Economic order quantity model when shortages are allowed/not allowed, price discounts model, multi-item inventory models.
$4(26-29)$	UNIT 2 :-Queuing Theory : Basic characteristics of queuing system.

Week(March)	Topics
$1(1-2)$	Birth-death equations, Steady state solution of Markovian queuing models with single and multiple servers (M/M/1 and M/M/c), with limited capacity (M/M/1/K and M/M/c/K).
$2(4-9)$	UNIT 3 :- Sequencing problems: Processing of n jobs through 2 machines, n jobs through 3 machines, 2 jobs through m machines, n jobs through m machines
$3(11-16)$	Replacement problems: Replacement of items whose running cost increases with time.
$4(18-23)$	Replacement policies for the items that fail completely - Individual and the group replacement policies.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	UNIT 4 :-PERT and CPM: Introduction of PERT and CPM, Earliest and latest times.
$2(8-13)$	Probablistic and cost considerations in project scheduling.
$3(15-20)$	Determination of critical path and various types of floats.
$4(22-27)$	REVISION
$5(29-30)$	TEST

Lesson Plan

Teacher \qquad Neeti \qquad
Class ...B.SC Hons \qquad
Subject ...Data structure using C
Session2023-24......

Week(Feb.)	Topics
$1(6-10)$	UNIT 1 :-Data structure and its essence, Data structure types.
$2(12-17)$	Linear and list structures: Arrays, stacks, queues and lists; Sequential and linked structures.
$3(19-24)$	Simple lists, circular lists, doubly linked lists. Inverted lists, threaded lists.
$4(26-29)$	Operations on all these structures and applications.

Week(March)	Topics
$1(1-2)$	UNIT 2 :-Arrays, Multidimensional arrays, sequential allocation, address calculations, sparse arrays
$2(4-9)$	sequential allocation, address calculations, sparse arrays.
$3(11-16)$	Tree structures: Trees, binary trees and binary search trees. Implementing binary trees, Tree traversal algorithms, threaded trees, trees in search algorithms, AVL Trees.
$4(18-23)$	UNIT 3 :-Graph data structure and their applications. Graph traversals, shortest paths, spanning trees and related algorithms. Family of B-Trees: B- tree, B*-Trees, B+ Trees.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Family of B-Trees: B-tree, B*-Trees, B+ Trees.
$2(8-13)$	UNIT 4 :-Sorting: Internal and External sorting. Various sorting algorithms, Time and Space complexity of algorithms.
$3(15-20)$	Searching techniques and Merging algorithms. Applications of sorting and searching in computer science.
$4(22-27)$	REVISION
$5(29-30)$	TEST

Lesson Plan

TeacherDeepshikha

Class ...B.Sc. $2^{\text {nd }}$ \qquad
Subject Group \& Ring
Session 2023-24.

Week(Feb.)	Topics
$1(6-10)$	UNIT-1 : Definition of a group with example and simple properties of groups.
$2(12-17)$	Subgroups and Subgroup criteria, Generation of groups, cyclic groups, Cosets.
$3(19-24)$	Left and right cosets, Index of a sub-group Coset decomposition.
$4(26-29)$	Largrage's theorem and its consequences, Normal subgroups, Quotient groups.

Week(March)	Topics
$1(1-2)$	UNIT- $2:$ Homoomorphisms, isomophisms, automorphisms and inner automorphisms of a group.
$2(4-9)$	Automorphisms of cyclic groups, Permutations groups. Even and odd permutations. Alternating groups, Cayley's theorem, Center of a group and derived group of a group.
$3(11-16)$	UNIT -3 : Introduction to rings, subrings, integral domains and fields.
$4(18-23)$	Characteristics of a ring. Ring homomorphisms.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	ideals (principle, prime and Maximal) and Quotient rings, Field of quotients of an integral domain.
$2(8-13)$	UNIT 4 : Euclidean rings, Polynomial rings, Polynomials over the rational field, The Eisenstein's criterion.
$3(15-20)$	Polynomial rings over commutative rings, Unique factorization domain, R unique factorization domain implies so is R[X1, X2,.....Xn].
$4(22-27)$	REVISION
$5(29-30)$	TEST

LESSON PLAN

Teacher: Deepshikha
Class: Bsc $2^{\text {nd }}$ (honours) $2^{\text {nd }}$ Sem
Subject : Programming in Visual Basic
Session: 2023-24

Week(Feb.)	Topics
$\mathbf{1}(\mathbf{6 - 1 0})$	UNIT-1: Introduction, analyzing, Data types.
$\mathbf{2 (1 2 - 1 7)}$	Variables, constant, Control and Properties, Exit statement
$\mathbf{3 (1 9 - 2 4)}$	conditional statement, Loop statement, Stop statement Arrays
$\mathbf{4 (2 6 - 2 9})$	UNIT-2: Text Boxes, Command Button, Labels, Additional controls-list box

Week(March)	Topics
$\mathbf{1 (1 - 2)}$	Combo box, difference between list box and combo box, option button, check box, Frames, scroll bar, timer control.
$\mathbf{2 (4 - 9)}$	Control arrays, Functions and procedures
$\mathbf{3 (1 1 - 1 6)}$	SDI and MDI Applications, Class test
$\mathbf{4 (1 8 - 2 3)}$	UNIT-3: Menu Editor, Menu Controls, Submenus, Popup menus
$\mathbf{5 (2 5 - 3 0})$	Holiday of Holi

Week(April)	Topics
$\mathbf{1 (1 - 6)}$	Common Dialog controls, Color dialog box, font dialog box, open and save as dialog box, print dialog box, help dialog box
$\mathbf{2 (8 - 1 3)}$	Data base programming: Data access object, Data binding, Data control and Data bound control, data base object, record set object, field object.
$\mathbf{3 (1 5 - 2 0)}$	UNIT -4: Crystal report: introduction to Reports, Crystal reports, Creating and using a report in VB, Class test.
$\mathbf{4 (2 2 - 2 7)}$	Library Functions: Conversion function, String functions, String function, Numeric functions, Date and Time functions
$\mathbf{5 (2 9 - 3 0)}$	Revision

TeacherDeepshikha. \qquad
ClassB.A. $1^{\text {st }}$ year........... Sec. \qquad
Subject ...Vector Calculus Session 2023-24...

Week(Feb.)	Topics
$1(6-10)$	UNIT 1:- Gradient of a scalar point function, geometrical interpretation of grad gradient as a point function
$2(12-17)$	Divergence and curl of vector point function, characters of ρ Div f pand Curl f as point function, examples.
$3(19-24)$	Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator.
$4(26-29)$	UNIT 2:- Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors.

Week(March)	Topics
$1(1-2)$	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinates, Cylindrical co-ordinates and Spherical co- ordinates.
$2(4-9)$	UNIT 3 :- Vector integration; Line integral, Surface integral, Volume integral.
$3(11-16)$	Theorems of Gauss, Green \& Stokes and problems based on these theorems.
$4(18-23)$	UNIT 4:- General equation of second degree.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Tangent at any point to the conic.
$2(8-13)$	chord of contact.
$3(15-20)$	pole of line to the conic, director circle of conic.
$4(22-27)$	REVISION
$5(29-30)$	TEST

Lesson Plan

Teacher ...Dr. Sonia.................
Class ...B.SC Math Honours $2^{\text {nd }}$ year.
Subject ...Numerical methods with programming in C......Session2023-24......

Week(Feb.)	Topics
$1(6-10)$	UNIT -1: Programmer's model of a computer.
$2(12-17)$	Algorithms, Flow charts.Data types, Operators and expressions, Input / outputs functions.

Week(feb.)	Topics
$3(19-24)$	Data types, Operators and expressions.
$4(26-29)$	Input / outputs functions.
Week(March)	UNIT -2: Decisions control structure: Decision statements.
$1(1-2)$	Logical and conditional statements.
$2(4-9)$	Implementation of Loops, Switch Statement \& Case control structures.

Week(March)	Topics
$1(1-2)$	Functions, Preprocessors and Arrays.
$2(4-9)$	UNIT -3: Strings: Character Data Type, Standard String handling Functions, Arithmetic Operations on Characters.
$3(11-16)$	Structures: Definition, using Structures, use of Structures in Arrays and Arrays in Structures
$4(18-23)$	Pointers: Pointers Data type, Pointers and Arrays, Pointers and Functions.
$5(25-30)$	Solution of Algebraic and Transcendental equations: Bisection method, Regula- Falsi method, Secant method, Newton-Raphson's method.

Week(April)	Topics
$1(1-6)$	Newton's iterative method for finding pth root of a number, Order of convergence of above methods UNIT -4: Simultaneous linear algebraic equations: Gauss- elimination method, Gauss-Jordan method.
$2(8-13)$	Triangularization method (LU decomposition method).
	Crout's method, Cholesky Decomposition method. Iterative method, Jacobi's method, Gauss-Seidal's method, Relaxation method.,
$4(22-27)$	ASSIGNMENT
$5(29-30)$	TEST

Lesson Plan

Teacher \qquad Dr. Sonia \qquad
Class \qquad Bsc $2^{\text {nd }}$ \qquad Sec. \qquad C. \qquad
Subject \qquad Group and Ring \qquad Session \qquad

Week(Feb.)	Topics
$1(6-10)$	UNIT-1 : Definition of a group with example and simple properties of groups.
$2(12-17)$	Subgroups and Subgroup criteria, Generation of groups, cyclic groups, Cosets.
$3(19-24)$	Left and right cosets, Index of a sub-group Coset decomposition.
$4(26-29)$	Largrage's theorem and its consequences, Normal subgroups, Quotient groups.

Week(March)	Topics
$1(1-2)$	UNIT- $2:$ Homoomorphisms, isomophisms, automorphisms and inner automorphisms of a group.
$2(4-9)$	Automorphisms of cyclic groups, Permutations groups. Even and odd permutations. Alternating groups, Cayley's theorem, Center of a group and derived group of a group.
$3(11-16)$	UNIT -3: Introduction to rings, subrings, integral domains and fields.
$4(18-23)$	Characteristics of a ring. Ring homomorphisms.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	ideals (principle, prime and Maximal) and Quotient rings, Field of quotients of an integral domain.
$2(8-13)$	UNIT 4 : Euclidean rings, Polynomial rings, Polynomials over the rational field, The Eisenstein's criterion.
$3(15-20)$	Polynomial rings over commutative rings, Unique factorization domain, R unique factorization domain implies so is R[X1, X2,.....Xn].
$4(22-27)$	REVISION
$5(29-30)$	TEST

Teacher ...Mankesh
Class \qquad B.Sc. $1^{\text {st }}$ B.A. $1^{\text {st }}$ \qquad Sec. \qquad A. \qquad
Subject Number Theory......Session2023-24(2 ${ }^{\text {nd }}$ sem.)......

Week(Feb.)	Topics
$1(19-24)$	Unit 1:Number Theory: Divisibility, G.C.D., L.C.M., Primes, fundamental theorem of arithmetic. Linear congruences, fermat's theorem, Wilson's theorem ant its converse
$2(26-29)$	Linear diphantine equation in two variables, test

Week(March)	Topics
$1(1-2)$	Unit 2:Complete residue system, reduced residue system module m
$2(4-9)$	Euler's function, euler's generalization of fermat's theorem, Chinese remainder theorem, quadratic residues, legendre symbols, lemma of gauss, gauss reciprocity law, greatest integer function[X], Test
$3(11-16)$	The number of divisors and the sum of divisors of a natural number n, moebius function and moebius inversion formula
$4(18-23)$	Unit 3: De moivre's theorem and its applications, expension of trigonometrical function, Assignment of unit 1
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Direct circular and hyperbolic function and their properties, test
$2(8-13)$	Unit 4: inverse circular and hyperbolic functions and their properties
$3(15-20)$	Logarithm of a complex quantity
$4(22-27)$	Gregory's series, summation of trigonometry series.
$5(29-30)$	revision

Lesson Plan

TeacherMankesh. \qquad
ClassB.Sc. ${ }^{\text {st }}$ year........... Sec.A.........
Subject ...Vector Calculus.....................Session2023-24...

Week(Feb.)	Topics
$1(6-10)$	UNIT 1:- Gradient of a scalar point function, geometrical interpretation of grad gradient as a point function
$2(12-17)$	Divergence and curl of vector point function, characters of ρ Div f pand Curl f as point function, examples.
$3(19-24)$	Gradient, divergence and curl of sums and product and their related vector identities. Laplacian operator.
$4(26-29)$	UNIT 2:- Orthogonal curvilinear coordinates Conditions for orthogonality fundamental triad of mutually orthogonal unit vectors.

Week(March)	Topics
$1(1-2)$	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinates, Cylindrical co-ordinates and Spherical co- ordinates.
$2(4-9)$	UNIT 3 :- Vector integration; Line integral, Surface integral, Volume integral.
$3(11-16)$	Theorems of Gauss, Green \& Stokes and problems based on these theorems.
$4(18-23)$	UNIT 4:- General equation of second degree.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Tangent at any point to the conic.
$2(8-13)$	chord of contact.
$3(15-20)$	pole of line to the conic, director circle of conic.
$4(22-27)$	REVISION
$5(29-30)$	TEST

TeacherNagesh Kumar Singh. \qquad
Class
B.A.III \qquad Sec \qquad
Subject-Special Function and Integral Transforms..Session-2023-24(6 Sem.)

Week(Feb. $)$	Topics
$1(6-10)$	Chapter 1: Power Series
$2(12-17)$	Continue....Chapter 1: Power Series
$3(19-24)$	Chapter 2: Bessel's equations and functions
$4(26-29)$	Continue...Chapter 2: Bessel's equations and functions, Test

Week(March)	Topics
$1(1-2)$	Chapter 3: Legendre's equations
$2(4-9)$	Chapter 5: Laplace transforms
$3(11-16)$	Chapter 6:Inverse Laplace transforms
$4(18-23)$	Chapter 7: Use of Laplace transforms in integral equations Assignment of chapter 1.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Chapter8: Solution of differential equation by laplace transformation, Test
$2(8-13)$	Chapter 9: Fourier transforms
$3(15-20)$	Continue.... Chapter 9: Fourier transforms
$4(22-27)$	Chapter10: Solution of differential equation by Fourier transforms
$5(29-30)$	Revision , Test

Lesson Plan

Teacher- Nagesh Kumar Singh
Class - B.Sc. $3^{\text {rd }} \ldots \ldots$. . Sec. $\mathrm{A}(4-6)+\mathrm{B}(1-3)$
Subject- Advanced calculus Session - 2023-24

Week(Feb.)	Topics
$1(5-7)$	UNIT -1: Uniform continuity, chain rule of differentiability, mean value theorem, rolle's theorem
$2(12-14)$	Lagrange's mean value theorem and their geometrical interpretations, taylor's theorem with various forms of remainders
$3(19-21)$	indeterminate forms , taylor's theorem with various forms of remainders
$4(26-28)$	Darboux intermediate value theorem for derivatives

Week(March)	Topics
$1(4-6)$	UNIT-2 : Limit and continuity of real valued functions of two variables. Partial differentiation
$2(11-13)$	Total differentiation; complete functions and implicit function. change of variables. Homogeneous functions and euler's theorem of homogeneous functions
$3(18-20)$	Revision and test of unit $1 \& 2$
$4(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-3)$	UNIT-3: Taylor's theorem for functions of two variables. Differentiability of real valued functions of two variables. Schwarz and young's theorem
$2(8-10)$	Implicit function theorem . maxima, minima and saddle point of two variables
$3(15-17)$	UNIT-4: Lagrange's method of multipliers . jacobian , differentiation under integral sign
$4(22-24)$	Application of triple integrals, change of variable in double and triple integrals.
$5(29-30)$	Test and assignment of unit 3\& 4

Lesson Plan

Teacher ...DR. AJAY SINGH

Class ...B.Com...2 $2^{\text {nd }}$ Sem.. Sec.B+C...........
Subject ..BUS.Mathematics..Session ...2023-2024..

Week(Feb.)	Topics
$1(6-10)$	Matrices: Definition of a matrix, Types of matrices; Algebra of matrices.
$2(12-17)$	Applications of matrices operations for solution to simple business and economic problems.
$3(19-24)$	Determinants and inverse of a matrix: Calculation of values of determinants up to third order. Finding inverse of a matrix through determinant method.
$4(26-29)$	Solution of system of linear equation up to three variables. Compound Interest: Certain different types of interest rate; Concept of present value and amount of a sum

Week(March)	Topics
$1(1-2)$	Annuities: Types of annuities; Present value of amount of an annuity, including the case of continuous compounding.
$2(4-9)$	Differentiation: Concept of differentiation. Rules of differentiation - simple standard forms. Applications of differentiation - elasticity of demand and supply.
$3(11-16)$	Applications of differentiation - elasticity of demand and supply.
$4(18-23)$	Maxima and Minima of functions (involving second or third order derivatives) relating to cost, revenue and profit.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Permutations and Combinations: Definition, Formulas, Difference.
$2(8-13)$	Difference between Permutations and Combinations,
$3(15-20)$	Fundamental Principle of Counting, N and Rin Permutations and Combinations (Simple Problems).
$4(22-27)$	Sequence and Series: Definition, Types Arithmetic Progression, Geometric Progression, Formulas,
$5(29-30)$	Difference between Sequence and Series (Simple Problems).

Lesson Plan

Teacher ...DR. Shekhar

Class ...B.Com...2 ${ }^{\text {nd }}$ Sem.. Sec.A............
Subject ..BUS.Mathematics..Session ...2023-2024..

Week(Feb.)	Topics
$1(6-10)$	Matrices: Definition of a matrix, Types of matrices; Algebra of matrices.
$2(12-17)$	Applications of matrices operations for solution to simple business and economic problems.
$3(19-24)$	Determinants and inverse of a matrix: Calculation of values of determinants up to third order. Finding inverse of a matrix through determinant method.
$4(26-29)$	Solution of system of linear equation up to three variables. Compound Interest: Certain different types of interest rate; Concept of present value and amount of a sum

Week(March)	Topics
$1(1-2)$	Annuities: Types of annuities; Present value of amount of an annuity, including the case of continuous compounding.
$2(4-9)$	Differentiation: Concept of differentiation. Rules of differentiation - simple standard forms. Applications of differentiation - elasticity of demand and supply.
$3(11-16)$	Applications of differentiation - elasticity of demand and supply.
$4(18-23)$	Maxima and Minima of functions (involving second or third order derivatives) relating to cost, revenue and profit.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Permutations and Combinations: Definition, Formulas, Difference.
$2(8-13)$	Difference between Permutations and Combinations,
$3(15-20)$	Fundamental Principle of Counting, N and Rin Permutations and Combinations (Simple Problems).
$4(22-27)$	Sequence and Series: Definition, Types Arithmetic Progression, Geometric Progression, Formulas,
$5(29-30)$	Difference between Sequence and Series (Simple Problems).

Lesson Plan
Teacher: ...Dr. Shekhar
Class: B.Sc. $2^{\text {nd }}$ \qquad Sem: C \qquad
Subject: Mechanics.....Session:2023-24......

Week(Feb.)	Topics(Statics)
$1(6-10)$	Chapter 1: Forces acting at a point
$2(12-17)$	Chapter 1: Forces acting at a point
$3(19-24)$	Chapter $2:$ Parallel forces
$4(26-29)$	Chapter 3: Moments

Week(March)	Topics
$1(1-2)$	Chapter 4: Couples, Test
$2(4-9)$	Chapter5: Analytical conditions of equilibrium of coplanar forces
$3(11-16)$	(Dynamics) Chapter 1: Motion along a plane curve
$4(18-23)$	Chapter 2: Relative motion, Assignment
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Chapter 3: simple harmonic motion, Test
$2(8-13)$	Chapter 4: Elastic string
$3(15-20)$	Chapter 5: Newton's law of motion
$4(22-27)$	Chapter 6: work, power and energy
$5(29-30)$	Revision

Lesson Plan

Teacher ...Sohan Phogat

Class ...BSc $1^{\text {st }}$ Honours.. Sec.
Subject ...Discrete Mathematics.....Session 2023-24.............

Week(Feb.)	Topics
$1(6-10)$	Lattices and their properties
$2(12-17)$	Lattice as algebraic system, Bounded
$3(19-24)$	Complement and distributive lattices.
$4(26-29)$	Boolean algebra, definition and examples, properties

Week(March)	Topics
$1(1-2)$	Duality, distributive and complmented Calculus.
$2(4-9)$	Design and implementation of digital networks, switching circuits, Karnaugh map
$3(11-16)$	Revision and Test of $1^{\text {st }}$ and 2 ${ }^{\text {nd }}$ Sections
$4(18-23)$	Graph, definition, exemplary types of graphs And Give the Assignment for Holiday
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Paths and circuits. Eulearian and Hermitian circuits, Seven bridges machine
$2(8-13)$	Shortest path traveling salesman problems, Planar graph. Matrix of graph Planar graph. Matrix of graph
$3(15-20)$	Directed Graphs, Trees, Isomorphism of Trees, Representation of Algebraic Expressions by Binary Trees,
$4(22-27)$	Spanning Tree of a Graph, Shortest Path Problem, Minimal spanning Trees, Cut Sets, Tree Searching
$5(29-30)$	Test of 3 ${ }^{\text {rd }}$ and $4^{\text {th }}$ Sections

Lesson Plan

Teacher ...Sohan Phogat

Class BSc III Honours........ Sec.
Subject Real And Complex.........Session 2023-24............

Week(Feb.)	Topics
$1(6-10)$	Jacobians, Beta and Gama functions,
$2(12-17)$	Double and Triple integrals, Dirichlets integrals,
$3(19-24)$	Change of order of integration in double integrals And Test of $1^{\text {st }}$ Secction
$4(26-29)$	Extended Complex Plane, Stereographic projection of complex numbers

Week(March)	Topics
$1(1-2)$	Continuity and differentiability of complex functions
$2(4-9)$	Analytic functions, Cauchy-Riemann equations.
$3(11-16)$	Harmonic functions And Test of 3rd Section
$4(18-23)$	Fourier's series: Fourier expansion of piecewise monotonic functions, Properties of Fourier Co-efficients,
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	conditions, Parseval's identity for Fourier series, Fourier series for even and odd functions
$2(8-13)$	Dirichlet's, Half range series, Change of Intervals
$3(15-20)$	Mappings by elementary functions: Translation, rotation, Magnification and Inversion.
$4(22-27)$	Conformal Mappings, Mobius transformations. Fixed pints, Cross ratio, Inverse Points and critical mappings.
$5(29-30)$	Test of 2 ${ }^{\text {nd }}$ and $4^{\text {th }}$ Section And Assignment Collection

Lesson Plan

Teacher ...Dr. Kulvir \qquad
Class B.Sc $1^{\text {st }}$ (Hons.) \qquad Sem. ...2nd. \qquad
Subject ...O.D.E Session ...2023-24

Week(Feb.)	Topics
$1(6-10)$	UNIT-1: Geometrical meaning of a differential equation. Exact differential equations, integrating factors.
$2(12-17)$	First order higher degree equations solvable for x,y,p Lagrange's equations, Clairaut's equations.
$3(19-24)$	Equation reducible to Clairaut's form. Singular solutions.
$4(26-29)$	UNIT-2: Orthogonal trajectories: in Cartesian coordinates and polar coordinates. Self orthogonal family of curves. Linear differential equations with constant coefficients.

Week(March)	Topics
$1(1-2)$	Homogeneous linear ordinary differential equations. Equations reducible to homogeneous
$2(4-9)$	Revision; test and assignment of UNIT-1 \& UNIT-2
$3(11-16)$	UNIT-3: Linear differential equations of second order: Reduction to normal form. Transformation of the equation by changing the dependent variable/ the independent variable.
$4(18-23)$	Solution by operators of non-homogeneous linear differential equations. Reduction of order of a differential equation.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Method of variations of parameters. Method of undetermined coefficients.
$2(8-13)$	UNIT-4: Ordinary simultaneous differential equations. Solution of simultaneous differential equations involving operators $x(\mathrm{~d} / \mathrm{dx})$ or $\mathrm{t}(\mathrm{d} / \mathrm{dt})$ etc.
$3(15-20)$	Simultaneous equation of the form dx/P $=\mathrm{dy} / \mathrm{Q}=\mathrm{dz} / \mathrm{R}$. Total differential equations. Condition for Pdx $+\mathrm{Qdy}+\mathrm{Rdz}=0$ to be exact.
$4(22-27)$	General method of solving Pdx + Qdy $+\mathrm{Rdz}=0$ by taking one variable constant. Method of auxiliary equations.
$5(29-30)$	Revision; test and assignment of UNIT-3 \& UNIT-4

Lesson Plan

Teacher \qquad .Dr. Kulvir \qquad
Class B.Sc $3^{\text {rd }}$ (Hons.) Sem. 6th \qquad
Subject ...Linear Algebra.
Session .2023-24

Week(Feb.)	Topics
$1(6-10)$	UNIT-1: Vector spaces, subspaces, Sum and Direct sum of subspaces, Linear span, Linearly Independent and dependent subsets of a vector space. Finitely generated vector space.
$2(12-17)$	Existence theorem for basis of a finitely generated vactor space, Finite dimensional vector spaces.
$3(19-24)$	Invariance of the number of elements of bases sets, Dimensions, Quotient space and its dimension.
$4(26-29)$	UNIT-2: Homomorphism and isomorphism of vector spaces, Linear transformations and linear forms on vactor spaces, Vactor space of all the linear transformations.

Week(March)	Topics
$1(1-2)$	Dual Spaces, Bidual spaces, annihilator of subspaces of finite dimentional vactor spaces, Null Space, Range space of a linear transformation, Rank and Nullity Theorem,
$2(4-9)$	Revision; test and assignment of UNIT-1 \& UNIT-2
$3(11-16)$	UNIT-3: Algebra of Liner Transformation, Minimal Polynomial of a linear transformation,
$4(18-23)$	Singular and non-singular linear transformations, Matrix of a linear Transformation.
$5(25-30)$	Holiday of Holi

Week(April)	Topics
$1(1-6)$	Change of basis, Eigen values and Eigen vectors of linear transformations.
$2(8-13)$	UNIT-4: Inner product spaces, Cauchy-Schwarz inequality, Orthogonal vectors, Orthogonal complements.
$3(15-20)$	Orthogonal sets and Basis, Bessel's inequality for finite dimensional vector spaces, Gram-Schmidt, Orthogonalization process.
$4(22-27)$	Adjoint of a linear transformation and its properties, Unitary linear transformations.
$5(29-30)$	Revision; test and assignment of UNIT-3 \& UNIT-4

