TeacherDr. Kuntal.....

Class ...B.Sc. Honours 1st..... Sec.

Week(Feb.)	Topics
1(14-17)	Introduction of linear regression
	Principal of least square and fitting of straight line, properties of regression
	coefficients, Derivative of two lines of regression
2(19-24)	Standard error of estimate obtained from regression lines, correlation
	coefficients between observed and estimated values, angle between two lines
	of regression, difference between correlation and regression.
3(26-29)	Curvilinear regression, fitting of curves.Test

Week(March)	Topics
1(1-2)	Basic concepts of Probability, Mathematical Probability, Statistical
	Probability and examples
2(4-9)	Subjective Probability and examples, Sets, Axiomatic Approach to
	Probability
3(11-16)	Addition Theorem of probability, Boole's inequality, Conditional
	probability, Multiplication theorems of probability and examples
4(18-23)	Bayes theorem and its application, Random variable and probability
	functions, defination and properties of random variable, Test, Assignment of
	1 st unit
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	discrete and continuous random variable, probability mass and density
	functions, distribution functions
2(8-13)	Concepts of bivariate random variable
3(15-20)	Joint marginal and conditional distributions
4(22-27)	Mathematical expectation moments measure of location, dispersion,
	skewness and kurtosis, Test
5(29-30)	revision

TeacherDr. Kuntal.....

Class- Maths honours 1st..... Sec.

Subject -Number Theory & Trigonmetry, Session2023-24(2nd sem.)......

Week(Feb.)	Topics
1(14-17)	Unit 1:Number Theory: Divisibility, G.C.D., L.C.M., Primes, fundamental
	theorem of arithmetic.
2(19-24)	Linear congruences, fermat's theorem, Wilson's theorem ant its converse
3(26-29)	Linear diphantine equation in two variables, test

Week(March)	Topics
1(1-2)	Unit 2:Complete residue system, reduced residue system module m
2(4-9)	Euler's function, euler's generalization of fermat's theorem, Chinese
	remainder theorem, quadratic residues, legendre symbols, lemma of gauss,
	gauss reciprocity law, greatest integer function[X], Test
3(11-16)	The number of divisors and the sum of divisors of a natural number n,
	moebius function and moebius inversion formula
4(18-23)	Unit 3: De moivre's theorem and its applications, expension of
	trigonometrical function, Assignment of unit 1
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Direct circular and hyperbolic function and their properties, test
2(8-13)	Unit 4: inverse circular and hyperbolic functions and their properties
3(15-20)	Logarithm of a complex quantity
4(22-27)	Gregory's series, summation of trigonometry series.
5(29-30)	revision

TeacherDr. Kuntal.....

Class ...B.Sc. Honours III...... Sec.

SubjectFluid Daynamics.......Session2023-24(6th sem.)......

Week(Feb.)	Topics
1(6-10)	Unit:1 Kinematics- Eulerian and langrangian methods, stream lines
2(12-17)	path lines and streak lines, Velocity potential, irrotational and rotational
	motion, vortex lines
3(19-24)	equations of continuity and its examples
4(26-29)	boundary surfaces and its examples, Test

Week(March)	Topics
1(1-2)	Unit-2: Acceleration at a point of a fluid,
2(4-9)	components of acceleration in cylindrical and spherical polar coordinates,
	pressure at a point of a moving fluid, euler's and legrange's equation of
	motion, Test
3(11-16)	bernoulli's equation, impulsive motion, stream function
4(18-23)	Unit-3: acyclic and cyclic irrotation motions, kinetic energy of irrotational
	flow, Assignment of unit 1
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	kalvin's minimum energy theorem, axially symmetric flows liquid streaming
	passed a fixed sphere, motion of a sphere through a liquid at rest at infinity
2(8-13)	Equation of motion of a sphere, three dimensional sources, sinks, doublets
	and their images, stokes stream function
3(15-20)	Unit-4: irrotational motion in two dimension, complex velocity potential,
	milne thomson theorem,
4(22-27)	blasius theorem and its applications and examples. Test
5(29-30)	Revision

Teacher ...Dr. Kuntal.....

Class ...B.sc. IV Sem...... Sec.

SubjectSEC. Logic and Sets.....Session ...2023-24.....

Week(Feb.)	Topics
1(06-08)	Unit-1: Introduction, propositions, truth table, negation
2(12-15)	conjuction and disconjuction, implications, bi-conditional propositions,
	converse
3(19-22)	contrapositive, and inverse propositions, and precedence of logical
	operators.Test
4(26-29)	Unit-2: propositional equivalence: logical equivalence

Week(March)	Topics
1(4-7)	predicates and quantifiers, introduction quantifiers
2(11-14)	binding variables and negations.
3(18-21)	Unit-3:Sets, Subsets, Set operations, the laws of set theory, and venn
	diagram, Assignment of unit 1
4(25-30)	Holiday of Holi

Week(April)	Topics
1(1-4)	Examples of finite and infinite sets, finite sets and counting principle, Test.
2(8-11)	Empty set, properties of empty set, Standard set operations, classes of set,
	power set
3(15-18)	Unit-4: Difference and Symmetric difference of two sets, set identifies,
	generalized union and intersection. Test
4(22-25)	Relation and its properties, Test
5(29-30)	Revision

TeacherDr. Sunita.....

Class ...B.Sc. Honours III..... Sec.

SubjectDynamics.......Session2023-24 (6th Sem)......

Week(Feb.)	Topics
1(6-10)	Chapter 1: Introduction of motion along a plane curve, Radial
	and transverse velocities and acceleration, Tangential and normal
	velocities and acceleration.
2(12-17)	Chapter 2: introduction of relative motion
3(19-24)	Chapter 3: introduction of SHM
4(26-29)	Chapter 4: introduction of elastic string, Test

Week(March)	Topics
1(1-2)	Chaptor 5: Introduction of Newton's law of motion
2(4-9)	ContinueChaptor 5: Introduction of Newton's law of motion
3(11-16)	Chaptor 6: introduction of work, Introduction of power,
	Introduction of energy
4(18-23)	Chapter 7: motion of a particle on smooth and rough plane
	curves, Motion on the outside of a vertical circle, Motion on the
	inside of a vertical circle, Cylindrical motion, Motion on a rough
	curve under gravity, Assignment of Chapter 1,2.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Chaptor 8: introduction of projectiles, Velocity at any point of the
	trajectory, Directions of projection for a particle to hit a given
	point, Range and time of flight, directions, and velocity, Test
2(8-13)	Chapter 9: introduction of central orbits, Areal velocity, elliptic
	orbit, hyperbolic orbits, Velocity in a curves, Apse and apsidal
	distances
3(15-20)	Chapter 10: introduction of kepler's law,
4(22-27)	Chapter 11: Motion of particle in three dimension, velocity and
	acc. Of moving axis
5(29-30)	Revision and Test

TeacherDr. Sunita.....

Class B.Sc.III...... Sec. ...A(1-3)+B(4-6).....

Subject-Special Function and Integral Transforms..Session-2023-24(6 Sem.)

Week(Feb.)	Topics
1 (6-10)	Chapter 1: Power Series
2(12-17)	ContinueChapter 1: Power Series
3(19-24)	Chapter 2: Bessel's equations and functions
4(26-29)	ContinueChapter 2: Bessel's equations and functions, Test

Week(March)	Topics
1(1-2)	Chapter 3: Legendre's equations
2(4-9)	Chapter 5: Laplace transforms
3(11-16)	Chapter 6:Inverse Laplace transforms
4(18-23)	Chapter 7: Use of Laplace transforms in integral equations
	Assignment of chapter 1.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Chapter8: Solution of differential equation by laplace
	transformation, Test
2(8-13)	Chapter 9: Fourier transforms
3(15-20)	Continue Chapter 9: Fourier transforms
4(22-27)	Chapter10: Solution of differential equation by Fourier
	transforms
5(29-30)	Revision, Test

TeacherDr. Sunita.....

Class B.Sc.II Honours...... Sec.

Subject-Special Function and Integral Transforms..Session-2023-24(4 Sem.)

Week(Feb.)	Topics
1 (6-10)	Chapter 1: Power Series
2(12-17)	ContinueChapter 1: Power Series
3(19-24)	Chapter 2: Bessel's equations and functions
4(26-29)	Chapter 3: Legendre's equations

Week(March)	Topics
1(1-2)	Chapter 4: Hermite's equations
2(4-9)	Chapter 5: Laplace transforms
3(11-16)	Chapter 6:Inverse Laplace transforms
4(18-23)	Chapter 7: Use of Laplace transforms in integral equations
	Assignment of chapter 1.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Chapter8: Solution of differential equation by laplace
	transformation, Test
2(8-13)	Chapter 9: Fourier transforms
3(15-20)	Continue Chapter 9: Fourier transforms
4(22-27)	Chapter10: Solution of differential equation by Fourier
	transforms
5(29-30)	Revision, Test

TeacherDr. Sunita.....

ClassB.Sc.III Honours....... Sec.

SubjectElementry Topology..Session2023-24......

Week(Feb.)	Topics
1 (6-10)	Unit1: Definition and examples of topological spaces. Comparison of
	topologies on a set, Intersection and union of topologies on a set.
2(12-17)	Neighbourhoods, Interior point and interior of a set, Closed set as a
	complement of an open set, Adherent point and limit point of a set,
3(19-24)	Closure of a set, Derived set, Properties of Closure operator, Boundary of a
	set, Dense subsets, Interior,
4(26-29)	Exterior and boundary operators. Alternative methods of defining a topology
	in terms of neighbourhood system and Kuratowski closure operator. Test

Week(March)	Topics
1(1-2)	Unit 2:Relative(Induced) topology, Base and subbase for a topology, Base
	for Neighbourhood system.
2(4-9)	Continuous functions, Open and closed functions, Homeomorphism.
	Connectedness and its characterization,
3(11-16)	Connected subsets and their properties, Continuity and connectedness,
	Components, Locally connected spaces.
4(18-23)	Unit 3:Compact spaces and subsets, Compactness in terms of finite
	intersection property, Continuity and compact sets, Basic properties of
	compactness, Assignment
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Closedness of compactsubset and a continuous map from
	compact space into a Hausdorff and its consequence. Test
2(8-13)	Sequentially and countably compact sets, Local compactness and one point
	compatification
3(15-20)	Unit 4:First countable, second countable and separable spaces, hereditary
	and topological property, Countability of a collection of disjoint open sets in
	separable and second countable spaces,
4(22-27)	Lindelof theorem. T0, T1, T2 (Hausdorff) separation axioms, their
	characterization and basic properties.
5(29-30)	Revision and Test

Teacher ... Punita(1-3) and ... Sunita(4-6).....

Class B.Sc II Honours..... Sec.

Subject - Hydrostatics....Session 2023-24 (4 th sem)......

Week(Feb.)	Topics
1 (6-10)	Pressure equation. Condition of equilibrium. Lines of force
2(12-17)	Homogeneous and heterogeneous fluids, Elastic fluids.
3(19-24)	Surface of equal pressure.
4(26-29)	Fluid at rest under action of gravity. Rotating fluids. Test

Week(March)	Topics
1(1-2)	Fluid pressure on plane surfaces. Centre of pressure. Resultant
	pressure on curved surfaces
2(4-9)	Equilibrium of floating bodies
3(11-16)	Curves of buoyancy. Surface of buoyancy
4(18-23)	Stability of equilibrium of floating bodies. Metacentre. Work
	done in producing a displacement. Assignment
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Vessels containing liquid, Test
2(8-13)	Stability of equilibrium of floating bodie, Metacentre.
3(15-20)	Work done in producing a displacement.
4(22-27)	Vessels containing liquid
5(29-30)	Revision and Test

Teacher: Savita Sharma.....

Class: B. Sc. 2nd Sec:...A+B.....

Subject: Mechanics.....Session:2023-24.....

Week(Feb.)	Topics(Statics)
1 (6-10)	Chapter 1: Forces acting at a point
2(12-17)	Chapter 1: Forces acting at a point
3(19-24)	Chapter 2 : Parallel forces
4(26-29)	Chapter 3: Moments

Week(March)	Topics
1(1-2)	Chapter 4: Couples, Test
2(4-9)	Chapter5: Analytical conditions of equilibrium of coplanar forces
3(11-16)	(Dynamics) Chapter 1: Motion along a plane curve
4(18-23)	Chapter 2: Relative motion, Assignment
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Chapter 3: simple harmonic motion, Test
2(8-13)	Chapter 4: Elastic string
3(15-20)	Chapter 5: Newton's law of motion
4(22-27)	Chapter 6: work, power and energy
5(29-30)	Revision

Teacher– SAVITA SHARMA

Class - B.A 3^{rd} Days-(1-3 days)

Subject- Advanced calculus Session - 2023-24

Week(Feb.)	Topics
1 (5-7)	UNIT -1: Uniform continuity, chain rule of differentiability,
	mean value theorem, rolle's theorem
2(12-14)	Lagrange's mean value theorem and their geometrical
	interpretations, taylor's theorem with various forms of remainders
3(19-21)	indeterminate forms, taylor's theorem with various forms of
	remainders
4(26-28)	Darboux intermediate value theorem for derivatives

Week(March)	Topics
1(4-6)	UNIT-2 : Limit and continuity of real valued functions of two
	variables. Partial differentiation
2(11-13)	Total differentiation; complete functions and implicit function.
	change of variables. Homogeneous functions and euler's theorem
	of homogeneous functions
3(18-20)	Revision and test of unit 1 & 2
4(25-30)	Holiday of Holi

Week(April)	Topics
1(1-3)	UNIT-3: Taylor's theorem for functions of two variables.
	Differentiability of real valued functions of two variables.
	Schwarz and young's theorem
2(8-10)	Implicit function theorem . maxima, minima and saddle point of
	two variables
3(15-17)	UNIT-4: Lagrange's method of multipliers . jacobian,
	differentiation under integral sign
4(22-24)	Application of triple integrals, change of variable in double and
	triple integrals.
5(29-30)	Test and assignment of unit 3& 4

Teacher: Sativa Sharma

Class: Bsc 2nd (honours) Sem: 4th

Subject : Elementry Inference Session: 2023-24

Week(Feb.)	Topics
1 (6-10)	UNIT-1:Parameter and statistic, sampling distribution and standard error of
	estimate
2(12-17)	Point and interval estimation, unbiasedness, efficiency and related examples
3(19-24)	Consistency, sufficiency and related examples
4(26-29)	UNIT-2:Method of maximum likelihood estimation and its examples, Test

Week(March)	Topics
1(1-2)	Null and alternative hypotheses, simple and composite hypotheses
2(4-9)	Critical region, level of significance, one tailed and two tailed test, types of
	error, Power of test, steps in solving testing of hypotheses problem
3(11-16)	Most powerful test and uniformly most powerful test, Neyman- Pearson
	lemma, unbiased test and unbiased critical region and its examples
4(18-23)	UNIT-3:Testing of significance, error in sampling, critical values, procedure
	for testing of hypothesis, sampling of attributes, test of significance for
	single proportion and its examples
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Test of significance for single mean and difference of means and its
	examples, Test and Assignment
2(8-13)	UNIT -4: Definition of chi-square test and its properties, definition of
	student's 't' and snedcor's F-statistics,
3(15-20)	Testing for the mean and variance of univariate normal distributions
4(22-27)	Related confidence intervals, analysis of variance for one way and two way
	classified data
5(29-30)	Revision

Teacher – Dr. KUSUM

Class- B.Sc 3^{rd} Sec – C+D

 $Subject-Advance\ calculus\dots\ Session-2023-24\dots$

Week(Feb.)	Topics
1 (8-10)	UNIT -1: Uniform continuity, chain rule of differentiability,
	mean value theorem, rolle's theorem
2(15-17)	Lagrange's mean value theorem and their geometrical
	interpretations, taylor's theorem with various forms of remainders
3(29)	Darboux intermediate value theorem for derivatives,
	indeterminate forms

Week(March)	Topics
1(1-2)	UNIT-2 : Limit and continuity of real valued functions of two
	variables. Partial differentiation
2(7-9)	Total differentiation; complete functions and implicit function.
	change of variables. Homogeneous functions and euler's theorem
	of homogeneous functions
3(14-16)	Revision and test of unit 1 & 2
4(21-23)	UNIT-3: Taylor's theorem for functions of two variables.
	Differentiability of real valued functions of two variables.
	Schwarz and young's theorem
5(25-30)	Holiday of Holi

Week(April)	Topics
1(4-6)	Implicit function theorem . maxima, minima and saddle point of
	two variables
2(11-13)	UNIT-4: Lagrange's method of multipliers . jacobian,
	differentiation under integral sign
3(18-20)	Application of triple integrals, change of variable in double and
	triple integrals.
4(25-27)	Test and assignment of unit 3& 4

Teacher : Dr. Kusum

Class : B.sc 3rd Sem: 6th.....

Subject : SEC(Transportation and game theory)... Session: 2023-24

Week(Feb.)	Topics
1 (6-8)	UNIT-1: Transportation problem
2(12-15)	Mathematical formulations: Transportation problem
3(19-22)	Northwest corner method
4(26-29)	Least cost method

Week(March)	Topics
1(4-7)	UNIT-2: Vogel approximation method for determination of
	starting basic solution Examples of vogel method
2(11-14)	Revision of unit1 and unit 2 and test and assignment
3(18-21)	UNIT-3 : Algorithm for solving transportation problem,
	assignment problem and its mathematical formulation
4(25-30)	Holiday of Holi

Week(April)	Topics
1(1-4)	Hungarian method for solving assignment problem
2(8-11)	UNIT-4: Game theory: formulation of two person zero sum
	games,
3(15-18)	Solving two person zero sum games
4(22-25)	Graphical solution procedure
5(29-30)	Test and assignment

Teacher ...Dr. Punita.....

ClassB.Sc. 1st...... Sec.A+B+C......

Subject Number Theory......Session2023-24(2nd sem.)......

Week(Feb.)	Topics
1(19-24)	Unit 1:Number Theory: Divisibility, G.C.D., L.C.M., Primes,
	fundamental theorem of arithmetic. Linear congruences, fermat's
	theorem, Wilson's theorem ant its converse
2(26-29)	Linear diphantine equation in two variables, test

Week(March)	Topics
1(1-2)	Unit 2:Complete residue system, reduced residue system module
	m
2(4-9)	Euler's function, euler's generalization of fermat's theorem,
	Chinese remainder theorem, quadratic residues, legendre
	symbols, lemma of gauss, gauss reciprocity law, greatest integer
	function[X], Test
3(11-16)	The number of divisors and the sum of divisors of a natural
	number n, moebius function and moebius inversion formula
4(18-23)	Unit 3: De moivre's theorem and its applications, expension of
	trigonometrical function, Assignment of unit 1
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Direct circular and hyperbolic function and their properties, test
2(8-13)	Unit 4: inverse circular and hyperbolic functions and their
	properties
3(15-20)	Logarithm of a complex quantity
4(22-27)	Gregory's series, summation of trigonometry series.
5(29-30)	revision

Teacher ... Punita(1-3) and ... Sunita(4-6).....

Class B.Sc II Honours..... Sec.

Subject - Hydrostatics....Session 2023-24 (4 th sem)......

Week(Feb.)	Topics
1 (6-10)	Pressure equation. Condition of equilibrium. Lines of force
2(12-17)	Homogeneous and heterogeneous fluids, Elastic fluids.
3(19-24)	Surface of equal pressure.
4(26-29)	Fluid at rest under action of gravity. Rotating fluids. Test

Week(March)	Topics
1(1-2)	Fluid pressure on plane surfaces. Centre of pressure. Resultant
	pressure on curved surfaces
2(4-9)	Equilibrium of floating bodies
3(11-16)	Curves of buoyancy. Surface of buoyancy
4(18-23)	Stability of equilibrium of floating bodies. Metacentre. Work
	done in producing a displacement. Assignment
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Vessels containing liquid, Test
2(8-13)	Stability of equilibrium of floating bodie, Metacentre.
3(15-20)	Work done in producing a displacement.
4(22-27)	Vessels containing liquid
5(29-30)	Revision and Test

Teacher ...Dr. Vikas.....

Class ...B.Sc Physics(H)..... Sem . 4th....

Subject ... Mathematics II...... Session -2023-24

Week(Feb.)	Topics
1 (6-10)	Reading and Writing Mathematics: Illustration of mathematical proofs via
	examples, Illustration of Conjunction, Disjunction
2(12-17)	Negation of Statements and Conditional Statements via examples, Functions and
	Relations
3(19-24)	Sets, DeMorgan'sLaws, Relations, Cartesian Products, Functions and Graphical
	Representation
4(26-29)	Injective and Surjective functions, Composition and Inverse of Functions

Week(March)	Topics
1(1-2)	Level Sets, Equivalence Relations and Equivalence Classes.
2(4-9)	Radial Numbers: Natural Numbers, Algebraic Properties
3(11-16)	Mathematical Induction. Real Numbers, Order Properties and Completeness
	Property of \mathbb{R} . Intervals on \mathbb{R} , Infinity, Infinite Sets and Cardinality.
4(18-23)	Revision; test and assignment of above topic.
5(25-30)	Holiday of Holi.

Week(April)	Topics
1(1-6)	Ionic Sequences: Sequences, Convergence,
2(8-13)	Limit Theorems, Divergence, Cauchy Sequences.
3(15-20)	Infinite Series: Convergence and Divergence of Series, Geometric Series, Tests
	for Convergence.
4(22-27)	Limits: Limits of Functions, Boundedness, Squeeze Theorem, Limits at Infinity
5(29-30)	Revision; test and assignment of above topic.

Teacher ...Dr. Vikas.....

Class ...B.Sc 1st(H)..... Sem . 2nd.....

Subject ...Vector Calculus......Session -2023-24

Week(Feb.)	Topics
1 (6-10)	UNIT-1: Scalar and vector product of three vectors, product of four vectors.
2(12-17)	Reciprocal vectors. Vector differentiation. Scalar Valued point functions, vector
	valued point functions
3(19-24)	Derivative along a curve, directional derivatives
4(26-29)	UNIT-2: Character of Φ Gradient of a scalar point function, geometrical
	interpretation of grad

Week(March)	Topics
1(1-2)	Gradient as a point function. Divergence and curl of vector point function,
	characters of pDiv f pand Curl f as point function, examples.
2(4-9)	Gradient, divergence and curl of sums and product and their related vector
	identities. Laplacian operator.
3(11-16)	Revision; test and assignment of UNIT-1 & UNIT-2
4(18-23)	UNIT-3: Orthogonal curvilinear coordinates Conditions for orthogonality
	fundamental triad of mutually orthogonal unit vectors
5(25-30)	Holiday of Holi.

Week(April)	Topics
1(1-6)	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal
	curvilinear coordinates.
2(8-13)	Cylindrical co-ordinates and Spherical co- ordinates.
3(15-20)	UNIT-4: Vector integration; Line integral, Surface integral, Volume integral.
4(22-27)	Theorems of Gauss, Green & Stokes and problems based on these theorms.
5(29-30)	Revision; test and assignment of UNIT-3 & UNIT-4

Teacher ...Dr. Vikas.....

Class ...B.Sc 2nd (H)..... Sem . 4th.....

Subject ...Sequence & Series.....Session -2023-24

Week(Feb.)	Topics
1 (6-10)	UNIT-1: Boundedness of the set of real numbers; least upper bound, greatest lower
	bound of a set, neighborhoods, interior points, isolated points, limit points.
2(12-17)	Open sets, closed set, interior of a set, closure of a set in real numbers and their
	properties.
3(19-24)	Bolzano-Weiestrass theorem, Open covers, Compact sets and Heine-Borel Theorem
4(26-29)	UNIT-2: Sequence: Real Sequences and their convergence, Theorem on limits of
	sequence, Bounded and monotonic sequences, Cauchy's sequence, Cauchy general
	principle of convergence.

Week(March)	Topics
1(1-2)	Subsequences, Sub sequential limits. Infinite series: Convergence and divergence of
	Infinite Series, Comparison Tests of positive terms Infinite series.
2(4-9)	Cauchy's general principle of Convergence of series, Convergence and divergence of
	geometric series, Hyper Harmonic series or p-series.
3(11-16)	Revision; test and assignment of above topic.
4(18-23)	UNIT-3: Infinite series: D-Alembert's ratio test, Raabe's test, Logarithmic test, de
	Morgan and Bertrand's test.
5(25-30)	Holiday of Holi.

Week(April)	Topics
1(1-6)	Cauchy's Nth root test, Gauss Test, Cauchy's integral test, Cauchy's condensation test.
2(8-13)	UNIT-4: Alternating series, Leibnitz's test, absolute and conditional convergence,
	Arbitrary series: abel's lemma, Abel's test, Dirichlet's test
3(15-20)	Insertion and removal of parenthesis, re- arrangement of terms in a series, Dirichlet's
	theorem, Riemann's Re-arrangement theorem, Pringsheim's theorem.
4(22-27)	Multiplication of series, Cauchy product of series, (definitions and examples only)
	Convergence and absolute convergence of infinite products.
5(29-30)	Revision; test and assignment of above topic.

TeacherDr. Neeti.....

Class Sec.

SubjectGroupSession

Week(Feb.)	Topics
1 (6-10)	UNIT-1 : Definition of a group with example and simple properties of
	groups.
2(12-17)	Subgroups and Subgroup criteria, Generation of groups, cyclic groups,
	Cosets.
3(19-24)	Left and right cosets, Index of a sub-group Coset decomposition.
4(26-29)	Largrage's theorem and its consequences, Normal subgroups, Quotient
	groups.

Week(March)	Topics
1(1-2)	UNIT-2: Homoomorphisms, isomophisms, automorphisms and inner
	automorphisms of a group.
2(4-9)	Automorphisms of cyclic groups, Permutations groups. Even and odd
	permutations. Alternating groups, Cayley's theorem, Center of a group and
	derived group of a group.
3(11-16)	UNIT -3 : Introduction to rings, subrings, integral domains and fields.
4(18-23)	Characteristics of a ring. Ring homomorphisms.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	ideals (principle, prime and Maximal) and Quotient rings, Field of quotients
	of an integral domain.
2(8-13)	UNIT 4 : Euclidean rings, Polynomial rings, Polynomials over the rational
	field, The Eisenstein's criterion.
3(15-20)	Polynomial rings over commutative rings, Unique factorization domain, R
	unique factorization domain implies so is R[X1, X2,Xn].
4(22-27)	REVISION
5(29-30)	TEST

TeacherDr. Kulvir.....

ClassB.sc 3rd year Hons.....

Subject ... Linear Algebra

Session2023-24...

Week(Feb.)	Topics
1 (6-10)	UNIT -1 : Vector spaces, subspaces, Sum and Direct sum of subspaces,
	Linear span, Linearly Independent and dependent subsets of a vector space.
2(12-17)	Finitely generated vector space, Existence theorem for basis of a finitely
	generated vector space.
3(19-24)	Finite dimensional vector spaces, Invariance of the number of elements of
	bases sets.
4(26-29)	Dimensions, Quotient space and its dimension.

Week(March)	Topics
1(1-2)	UNIT -2: Homomorphism and isomorphism of vector spaces, Linear
	transformations and linear forms on vector spaces.
2(4-9)	Vector space of all the linear transformations Dual Spaces, Bidual spaces,
	annihilator of subspaces of finite dimentional vector spaces.
3(11-16)	Null Space, Range space of a linear transformation, Rank and Nullity
	Theorem.
4(18-23)	UNIT -3: Algebra of Liner Transformation, Minimal Polynomial of a linear
	transformation, Singular and non-singular linear transformations.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Matrix of a linear Transformation, Change of basis, Eigen values and Eigen
	vectors of linear transformations.
2(8-13)	UNIT -4: Inner product spaces, Cauchy-Schwarz inequality.
3(15-20)	Orthogonal sets and Basis, Bessel's inequality for finite dimensional vector
	spaces, Gram-Schmidt, Orthogonalization process.
4(22-27)	Adjoint of a linear transformation and its properties, Unitary linear
	transformations.
5(29-30)	REVISION

TeacherDr. Neeti.....

ClassB.A. 2nd year...... Sec.

SubjectGroup and Ring......Session ...2023-24 even sem.

Week(Feb.)	Topics
1 (6-10)	UNIT-1 : Definition of a group with example and simple properties of
	groups.
2(12-17)	Subgroups and Subgroup criteria, Generation of groups, cyclic groups,
	Cosets.
3(19-24)	Left and right cosets, Index of a sub-group Coset decomposition.
4(26-29)	Largrage's theorem and its consequences, Normal subgroups, Quotient
	groups.

Week(March)	Topics
1(1-2)	UNIT-2: Homoomorphisms, isomophisms, automorphisms and inner
	automorphisms of a group.
2(4-9)	Automorphisms of cyclic groups, Permutations groups. Even and odd
	permutations. Alternating groups, Cayley's theorem, Center of a group and
	derived group of a group.
3(11-16)	UNIT -3 : Introduction to rings, subrings, integral domains and fields.
4(18-23)	Characteristics of a ring. Ring homomorphisms.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	ideals (principle, prime and Maximal) and Quotient rings, Field of quotients
	of an integral domain.
2(8-13)	UNIT 4 : Euclidean rings, Polynomial rings, Polynomials over the rational
	field, The Eisenstein's criterion.
3(15-20)	Polynomial rings over commutative rings, Unique factorization domain, R
	unique factorization domain implies so is R[X1, X2,Xn].
4(22-27)	REVISION
5(29-30)	TEST

Teacher ...Dr. Neeti.....

ClassB.A (2nd year)...... Sec.

SubjectMechanics......Session2023-24......

Week(Feb.)	Topics(Statics)
1 (6-10)	Chapter 1: Forces acting at a point
2(12-17)	Chapter 1: Forces acting at a point
3(19-24)	Chapter 2 : Parallel forces
4(26-29)	Chapter 3: Moments

Week(March)	Topics
1(1-2)	Chapter 4: Couples, Test
2(4-9)	Chapter5: Analytical conditions of equilibrium of coplanar forces
3(11-16)	(Dynamics) Chapter 1: Motion along a plane curve
4(18-23)	Chapter 2: Relative motion, Assignment
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Chapter 3: simple harmonic motion, Test
2(8-13)	Chapter 4: Elastic string
3(15-20)	Chapter 5: Newton's law of motion
4(22-27)	Chapter 6: work, power and energy
5(29-30)	Revision

TeacherDr. Neeti.....

ClassB.Sc. 1st year...... Sec.B+C......

Week(Feb.)	Topics
1 (6-10)	UNIT 1:- Gradient of a scalar point function, geometrical interpretation of
	grad gradient as a point function
2(12-17)	Divergence and curl of vector point function, characters of pDiv f pand Curl
	f as point function, examples.
3(19-24)	Gradient, divergence and curl of sums and product and their related vector
	identities. Laplacian operator.
4(26-29)	UNIT 2:- Orthogonal curvilinear coordinates Conditions for orthogonality
	fundamental triad of mutually orthogonal unit vectors.

Week(March)	Topics
1(1-2)	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal
	curvilinear coordinates, Cylindrical co-ordinates and Spherical co- ordinates.
2(4-9)	UNIT 3 :- Vector integration; Line integral, Surface integral, Volume
	integral.
3(11-16)	Theorems of Gauss, Green & Stokes and problems based on these theorems.
4(18-23)	UNIT 4:- General equation of second degree.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Tangent at any point to the conic.
2(8-13)	chord of contact.
3(15-20)	pole of line to the conic, director circle of conic.
4(22-27)	REVISION
5(29-30)	TEST

TeacherNeeti.....

Class ...B.SC Hons.....

Subject ... Ordinary differential equation

Session ... 2023-24

Week(Feb.)	Topics
1 (6-10)	UNIT 1 :-Geometrical meaning of a differential equation.
2(12-17)	Exact differential equations, integrating factors.
3(19-24)	First order higher degree equations solvable for x,y,p Lagrange's equations,
	Clairaut's equations.
4(26-29)	Equation reducible to Clairaut's form. Singular solutions.

Week(March)	Topics
1(1-2)	UNIT 2 :- Orthogonal trajectories: in Cartesian coordinates and polar
	coordinates.
2(4-9)	Self orthogonal family of curves Linear differential equations with constant
	coefficients.
3(11-16)	Homogeneous linear ordinary differential equations. Equations reducible to
	homogeneous.
4(18-23)	UNIT 3 :- Linear differential equations of second order: Reduction to normal
	form.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Transformation of the equation by changing the dependent variable/ the
	independent variable. Solution by operators of non-homogeneous linear
	differential equations.
2(8-13)	Reduction of order of a differential equation. Method of variations of
	parameters. Method of undetermined coefficients.
3(15-20)	UNIT 4 :- Ordinary simultaneous differential equations. Solution of
	simultaneous differential equations involving operators x (d/dx) or t (d/dt)
	etc.
4(22-27)	Simultaneous equation of the form $dx/P = dy/Q = dz/R$. Total differential
	equations. Condition for $Pdx + Qdy + Rdz = 0$ to be exact. General method
	of solving $Pdx + Qdy + Rdz = 0$ by taking one variable constant. Method of
	auxiliary equations.
5(29-30)	REVISION

TeacherNeeti.....

Class ...B.SC Hons.....

SubjectOperation research 2

Session2023-24.....

Week(Feb.)	Topics
1 (6-10)	UNIT 1 :-Inventory Control: introduction of inventory, factors affecting
	inventory.
2(12-17)	Inventory models, Deterministic models.
3(19-24)	Economic order quantity model when shortages are allowed/not allowed,
	price discounts model, multi-item inventory models.
4(26-29)	UNIT 2 :- Queuing Theory : Basic characteristics of queuing system.

Week(March)	Topics
1(1-2)	Birth-death equations, Steady state solution of Markovian queuing models
	with single and multiple servers (M/M/1 and M/M/c), with limited capacity
	(M/M/1/K and M/M/c/K).
2(4-9)	UNIT 3 :- Sequencing problems: Processing of n jobs through 2 machines, n
	jobs through 3 machines, 2 jobs through m machines, n jobs through m
	machines
3(11-16)	Replacement problems: Replacement of items whose running cost increases
	with time.
4(18-23)	Replacement policies for the items that fail completely - Individual and the
	group replacement policies.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	UNIT 4 :- PERT and CPM: Introduction of PERT and CPM, Earliest and
	latest times.
2(8-13)	Probablistic and cost considerations in project scheduling.
3(15-20)	Determination of critical path and various types of floats.
4(22-27)	REVISION
5(29-30)	TEST

TeacherNeeti.....

Class ...B.SC Hons.....

Subject ... Data structure using C

Session2023-24.....

Week(Feb.)	Topics
1 (6-10)	UNIT 1 :- Data structure and its essence, Data structure types.
2(12-17)	Linear and list structures: Arrays, stacks, queues and lists; Sequential and
	linked structures.
3(19-24)	Simple lists, circular lists, doubly linked lists. Inverted lists, threaded lists.
4(26-29)	Operations on all these structures and applications.

Week(March)	Topics
1(1-2)	UNIT 2 :- Arrays, Multidimensional arrays, sequential allocation, address
	calculations, sparse arrays
2(4-9)	sequential allocation, address calculations, sparse arrays.
3(11-16)	Tree structures: Trees, binary trees and binary search trees. Implementing
	binary trees, Tree traversal algorithms, threaded trees, trees in search
	algorithms, AVL Trees.
4(18-23)	UNIT 3 :- Graph data structure and their applications. Graph traversals,
	shortest paths, spanning trees and related algorithms. Family of B-Trees: B-
	tree, B*-Trees, B+ Trees.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Family of B-Trees: B-tree, B*-Trees, B+ Trees.
2(8-13)	UNIT 4 :- Sorting: Internal and External sorting. Various sorting algorithms,
	Time and Space complexity of algorithms.
3(15-20)	Searching techniques and Merging algorithms. Applications of sorting and
	searching in computer science.
4(22-27)	REVISION
5(29-30)	TEST

Class ...B.Sc.2nd Sec.A+B......

SubjectGroup & Ring......Session2023-24.....

Week(Feb.)	Topics
1 (6-10)	UNIT-1 : Definition of a group with example and simple properties of groups.
2(12-17)	Subgroups and Subgroup criteria, Generation of groups, cyclic groups, Cosets.
3(19-24)	Left and right cosets, Index of a sub-group Coset decomposition.
4(26-29)	Largrage's theorem and its consequences, Normal subgroups, Quotient groups.

Week(March)	Topics
1(1-2)	UNIT- 2 : Homoomorphisms, isomophisms, automorphisms and inner
	automorphisms of a group.
2(4-9)	Automorphisms of cyclic groups, Permutations groups. Even and odd
	permutations. Alternating groups, Cayley's theorem, Center of a group and
	derived group of a group.
3(11-16)	UNIT -3 : Introduction to rings, subrings, integral domains and fields.
4(18-23)	Characteristics of a ring. Ring homomorphisms.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	ideals (principle, prime and Maximal) and Quotient rings, Field of quotients of an
	integral domain.
2(8-13)	UNIT 4 : Euclidean rings, Polynomial rings, Polynomials over the rational field, The
	Eisenstein's criterion.
3(15-20)	Polynomial rings over commutative rings, Unique factorization domain, R unique
	factorization domain implies so is R[X1 , X2,Xn].
4(22-27)	REVISION
5(29-30)	TEST

LESSON PLAN

Teacher: Deepshikha

Class: Bsc 2nd (honours) 2nd Sem

Subject : Programming in Visual Basic

Session: 2023-24

Week(Feb.)	Topics
1 (6-10)	UNIT-1: Introduction, analyzing, Data types.
2(12-17)	Variables, constant, Control and Properties, Exit statement
3(19-24)	conditional statement, Loop statement, Stop statement Arrays
4(26-29)	UNIT-2: Text Boxes, Command Button, Labels, Additional controls-list box

Week(March)	Topics
1(1-2)	Combo box, difference between list box and combo box, option button,
	check box, Frames, scroll bar, timer control.
2(4-9)	Control arrays, Functions and procedures
3(11-16)	SDI and MDI Applications, Class test
4(18-23)	UNIT-3: Menu Editor, Menu Controls, Submenus, Popup menus
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Common Dialog controls, Color dialog box, font dialog box, open and save
	as dialog box, print dialog box, help dialog box
2(8-13)	Data base programming: Data access object, Data binding, Data control and
	Data bound control, data base object, record set object, field object.
3(15-20)	UNIT -4: Crystal report: introduction to Reports, Crystal reports, Creating
	and using a report in VB, Class test.
4(22-27)	Library Functions: Conversion function, String functions, String function,
	Numeric functions, Date and Time functions
5(29-30)	Revision

TeacherDeepshikha.....

ClassB.A. 1st year...... Sec.

Subject ...Vector Calculus......Session2023-24...

Week(Feb.)	Topics
1 (6-10)	UNIT 1:- Gradient of a scalar point function, geometrical interpretation of
	grad gradient as a point function
2(12-17)	Divergence and curl of vector point function, characters of pDiv f pand Curl
	f as point function, examples.
3(19-24)	Gradient, divergence and curl of sums and product and their related vector
	identities. Laplacian operator.
4(26-29)	UNIT 2:- Orthogonal curvilinear coordinates Conditions for orthogonality
	fundamental triad of mutually orthogonal unit vectors.

Week(March)	Topics
1(1-2)	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal
	curvilinear coordinates, Cylindrical co-ordinates and Spherical co- ordinates.
2(4-9)	UNIT 3 :- Vector integration; Line integral, Surface integral, Volume
	integral.
3(11-16)	Theorems of Gauss, Green & Stokes and problems based on these theorems.
4(18-23)	UNIT 4:- General equation of second degree.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Tangent at any point to the conic.
2(8-13)	chord of contact.
3(15-20)	pole of line to the conic, director circle of conic.
4(22-27)	REVISION
5(29-30)	TEST

Teacher ... Dr. Sonia.....

Class ...B.SC Math Honours 2nd year.....

SubjectNumerical methods with programming in C.....Session2023-24.....

Week(Feb.)	Topics
1 (6-10)	UNIT -1: Programmer's model of a computer.
2(12-17)	Algorithms, Flow charts. Data types, Operators and expressions, Input / outputs
	functions.

Week(feb.)	Topics
3(19-24)	Data types, Operators and expressions.
4(26-29)	Input / outputs functions.
Week(March)	UNIT -2: Decisions control structure: Decision statements.
1(1-2)	Logical and conditional statements.
2(4-9)	Implementation of Loops, Switch Statement & Case control structures.

Week(March)	Topics
1(1-2)	Functions, Preprocessors and Arrays.
2(4-9)	UNIT -3: Strings: Character Data Type, Standard String handling Functions,
	Arithmetic Operations on Characters.
3(11-16)	Structures: Definition, using Structures, use of Structures in Arrays and Arrays in
	Structures
4(18-23)	Pointers: Pointers Data type, Pointers and Arrays, Pointers and Functions.
5(25-30)	Solution of Algebraic and Transcendental equations: Bisection method, Regula-
	Falsi method, Secant method, Newton-Raphson's method.

Week(April)	Topics
1(1-6)	Newton's iterative method for finding pth root of a number, Order of convergence
	of above methods UNIT -4: Simultaneous linear algebraic equations: Gauss-
	elimination method, Gauss-Jordan method.
2(8-13)	Triangularization method (LU decomposition method).
	Crout's method, Cholesky Decomposition method. Iterative method, Jacobi's
	method, Gauss-Seidal's method, Relaxation method.,
4(22-27)	ASSIGNMENT
5(29-30)	TEST

TeacherDr. Sonia.....

SubjectGroup and Ring.....Session

Week(Feb.)	Topics
1 (6-10)	UNIT-1 : Definition of a group with example and simple properties of
	groups.
2(12-17)	Subgroups and Subgroup criteria, Generation of groups, cyclic groups,
	Cosets.
3(19-24)	Left and right cosets, Index of a sub-group Coset decomposition.
4(26-29)	Largrage's theorem and its consequences, Normal subgroups, Quotient
	groups.

Week(March)	Topics
1(1-2)	UNIT-2: Homoomorphisms, isomophisms, automorphisms and inner
	automorphisms of a group.
2(4-9)	Automorphisms of cyclic groups, Permutations groups. Even and odd
	permutations. Alternating groups, Cayley's theorem, Center of a group and
	derived group of a group.
3(11-16)	UNIT -3 : Introduction to rings, subrings, integral domains and fields.
4(18-23)	Characteristics of a ring. Ring homomorphisms.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	ideals (principle, prime and Maximal) and Quotient rings, Field of quotients
	of an integral domain.
2(8-13)	UNIT 4 : Euclidean rings, Polynomial rings, Polynomials over the rational
	field, The Eisenstein's criterion.
3(15-20)	Polynomial rings over commutative rings, Unique factorization domain, R
	unique factorization domain implies so is R[X1, X2,Xn].
4(22-27)	REVISION
5(29-30)	TEST

Teacher ... Mankesh.....

ClassB.Sc. 1st/B.A.1st Sec.A.....

Subject Number Theory......Session2023-24(2nd sem.)......

Week(Feb.)	Topics
1(19-24)	Unit 1:Number Theory: Divisibility, G.C.D., L.C.M., Primes,
	fundamental theorem of arithmetic. Linear congruences, fermat's
	theorem, Wilson's theorem ant its converse
2(26-29)	Linear diphantine equation in two variables, test

Week(March)	Topics
1(1-2)	Unit 2:Complete residue system, reduced residue system module
	m
2(4-9)	Euler's function, euler's generalization of fermat's theorem,
	Chinese remainder theorem, quadratic residues, legendre
	symbols, lemma of gauss, gauss reciprocity law, greatest integer
	function[X], Test
3(11-16)	The number of divisors and the sum of divisors of a natural
	number n, moebius function and moebius inversion formula
4(18-23)	Unit 3: De moivre's theorem and its applications, expension of
	trigonometrical function, Assignment of unit 1
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Direct circular and hyperbolic function and their properties, test
2(8-13)	Unit 4: inverse circular and hyperbolic functions and their
	properties
3(15-20)	Logarithm of a complex quantity
4(22-27)	Gregory's series, summation of trigonometry series.
5(29-30)	revision

TeacherMankesh.....

ClassB.Sc. 1st year...... Sec.A......

Week(Feb.)	Topics
1 (6-10)	UNIT 1:- Gradient of a scalar point function, geometrical interpretation of
	grad gradient as a point function
2(12-17)	Divergence and curl of vector point function, characters of pDiv f pand Curl
	f as point function, examples.
3(19-24)	Gradient, divergence and curl of sums and product and their related vector
	identities. Laplacian operator.
4(26-29)	UNIT 2:- Orthogonal curvilinear coordinates Conditions for orthogonality
	fundamental triad of mutually orthogonal unit vectors.

Week(March)	Topics
1(1-2)	Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal
	curvilinear coordinates, Cylindrical co-ordinates and Spherical co- ordinates.
2(4-9)	UNIT 3 :- Vector integration; Line integral, Surface integral, Volume
	integral.
3(11-16)	Theorems of Gauss, Green & Stokes and problems based on these theorems.
4(18-23)	UNIT 4:- General equation of second degree.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Tangent at any point to the conic.
2(8-13)	chord of contact.
3(15-20)	pole of line to the conic, director circle of conic.
4(22-27)	REVISION
5(29-30)	TEST

TeacherNagesh Kumar Singh.....

Class B.A.III...... Sec.

Subject-Special Function and Integral Transforms..Session-2023-24(6 Sem.)

Week(Feb.)	Topics
1 (6-10)	Chapter 1: Power Series
2(12-17)	ContinueChapter 1: Power Series
3(19-24)	Chapter 2: Bessel's equations and functions
4(26-29)	ContinueChapter 2: Bessel's equations and functions, Test

Week(March)	Topics
1(1-2)	Chapter 3: Legendre's equations
2(4-9)	Chapter 5: Laplace transforms
3(11-16)	Chapter 6:Inverse Laplace transforms
4(18-23)	Chapter 7: Use of Laplace transforms in integral equations
	Assignment of chapter 1.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Chapter8: Solution of differential equation by laplace
	transformation, Test
2(8-13)	Chapter 9: Fourier transforms
3(15-20)	Continue Chapter 9: Fourier transforms
4(22-27)	Chapter10: Solution of differential equation by Fourier
	transforms
5(29-30)	Revision, Test

Teacher– Nagesh Kumar Singh

Class – B.Sc. 3^{rd} Sec. A(4-6)+ B(1-3)

Subject- Advanced calculus Session – 2023-24

Week(Feb.)	Topics
1 (5-7)	UNIT -1: Uniform continuity, chain rule of differentiability,
	mean value theorem, rolle's theorem
2(12-14)	Lagrange's mean value theorem and their geometrical
	interpretations, taylor's theorem with various forms of remainders
3(19-21)	indeterminate forms, taylor's theorem with various forms of
	remainders
4(26-28)	Darboux intermediate value theorem for derivatives

Week(March)	Topics
1(4-6)	UNIT-2 : Limit and continuity of real valued functions of two
	variables. Partial differentiation
2(11-13)	Total differentiation; complete functions and implicit function.
	change of variables. Homogeneous functions and euler's theorem
	of homogeneous functions
3(18-20)	Revision and test of unit 1 & 2
4(25-30)	Holiday of Holi

Week(April)	Topics
1(1-3)	UNIT-3: Taylor's theorem for functions of two variables.
	Differentiability of real valued functions of two variables.
	Schwarz and young's theorem
2(8-10)	Implicit function theorem . maxima, minima and saddle point of
	two variables
3(15-17)	UNIT-4: Lagrange's method of multipliers . jacobian,
	differentiation under integral sign
4(22-24)	Application of triple integrals, change of variable in double and
	triple integrals.
5(29-30)	Test and assignment of unit 3& 4

Teacher ... DR. AJAY SINGH.....

Class ... B.Com...2nd Sem. Sec.B+C.....

Subject ...BUS.Mathematics...Session2023-2024...

Week(Feb.)	Topics
1 (6-10)	Matrices: Definition of a matrix, Types of matrices; Algebra of matrices.
2(12-17)	Applications of matrices operations for solution to simple business and economic
	problems.
3(19-24)	Determinants and inverse of a matrix: Calculation of values of determinants up to
	third order. Finding inverse of a matrix through determinant method.
4(26-29)	Solution of system of linear equation up to three variables. Compound Interest:
	Certain different types of interest rate; Concept of present value and amount of a
	sum

Week(March)	Topics
1(1-2)	Annuities: Types of annuities; Present value of amount of an annuity, including the
	case of continuous compounding.
2(4-9)	Differentiation: Concept of differentiation. Rules of differentiation - simple
	standard forms. Applications of differentiation - elasticity of demand and supply.
3(11-16)	Applications of differentiation - elasticity of demand and supply.
4(18-23)	Maxima and Minima of functions (involving second or third order derivatives)
	relating to cost, revenue and profit.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Permutations and Combinations: Definition, Formulas, Difference.
2(8-13)	Difference between Permutations and Combinations,
3(15-20)	Fundamental Principle of Counting, N and Rin Permutations and Combinations
	(Simple Problems).
4(22-27)	Sequence and Series: Definition, Types Arithmetic Progression, Geometric
	Progression, Formulas,
5(29-30)	Difference between Sequence and Series (Simple Problems).

Teacher ... DR. Shekhar.....

Class ...B.Com...2nd Sem. Sec.A.....

Subject ...BUS.Mathematics...Session2023-2024..

Week(Feb.)	Topics
1 (6-10)	Matrices: Definition of a matrix, Types of matrices; Algebra of matrices.
2(12-17)	Applications of matrices operations for solution to simple business and economic
	problems.
3(19-24)	Determinants and inverse of a matrix: Calculation of values of determinants up to
	third order. Finding inverse of a matrix through determinant method.
4(26-29)	Solution of system of linear equation up to three variables. Compound Interest:
	Certain different types of interest rate; Concept of present value and amount of a
	sum

Week(March)	Topics
1(1-2)	Annuities: Types of annuities; Present value of amount of an annuity, including the
	case of continuous compounding.
2(4-9)	Differentiation: Concept of differentiation. Rules of differentiation - simple
	standard forms. Applications of differentiation - elasticity of demand and supply.
3(11-16)	Applications of differentiation - elasticity of demand and supply.
4(18-23)	Maxima and Minima of functions (involving second or third order derivatives)
	relating to cost, revenue and profit.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Permutations and Combinations: Definition, Formulas, Difference.
2(8-13)	Difference between Permutations and Combinations,
3(15-20)	Fundamental Principle of Counting, N and Rin Permutations and Combinations
	(Simple Problems).
4(22-27)	Sequence and Series: Definition, Types Arithmetic Progression, Geometric
	Progression, Formulas,
5(29-30)	Difference between Sequence and Series (Simple Problems).

Teacher: ...Dr. Shekhar.....

Class: B.Sc. 2nd Sem: C

Subject: Mechanics.....Session:2023-24.....

Week(Feb.)	Topics(Statics)
1 (6-10)	Chapter 1: Forces acting at a point
2(12-17)	Chapter 1: Forces acting at a point
3(19-24)	Chapter 2 : Parallel forces
4(26-29)	Chapter 3: Moments

Week(March)	Topics
1(1-2)	Chapter 4: Couples, Test
2(4-9)	Chapter5: Analytical conditions of equilibrium of coplanar forces
3(11-16)	(Dynamics) Chapter 1: Motion along a plane curve
4(18-23)	Chapter 2: Relative motion, Assignment
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Chapter 3: simple harmonic motion, Test
2(8-13)	Chapter 4: Elastic string
3(15-20)	Chapter 5: Newton's law of motion
4(22-27)	Chapter 6: work, power and energy
5(29-30)	Revision

TeacherSohan Phogat.....

Class ... BSc 1st Honours. Sec.

Subject ... Discrete Mathematics.....Session 2023-24.....

Week(Feb.)	Topics
1 (6-10)	Lattices and their properties
2(12-17)	Lattice as algebraic system, Bounded
3(19-24)	Complement and distributive lattices.
4(26-29)	Boolean algebra, definition and examples, properties

Week(March)	Topics
1(1-2)	Duality, distributive and complmented Calculus.
2(4-9)	Design and implementation of digital networks, switching circuits, Karnaugh map
3(11-16)	Revision and Test of 1 st and 2 nd Sections
4(18-23)	Graph, definition, exemplary types of graphs And Give the Assignment for
	Holiday
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Paths and circuits. Eulearian and Hermitian circuits, Seven bridges machine
2(8-13)	Shortest path traveling salesman problems, Planar graph. Matrix of graph Planar
	graph. Matrix of graph
3(15-20)	Directed Graphs, Trees, Isomorphism of Trees, Representation of Algebraic
	Expressions by Binary Trees,
4(22-27)	Spanning Tree of a Graph, Shortest Path Problem, Minimal spanning Trees, Cut
	Sets, Tree Searching
5(29-30)	Test of 3 rd and 4 th Sections

TeacherSohan Phogat.....

Class BSc III Honours..... Sec.

Subject Real And Complex......Session 2023-24.....

Week(Feb.)	Topics
1 (6-10)	Jacobians, Beta and Gama functions,
2(12-17)	Double and Triple integrals, Dirichlets integrals,
3(19-24)	Change of order of integration in double integrals And Test of 1 st Secction
4(26-29)	Extended Complex Plane, Stereographic projection of complex numbers

Week(March)	Topics
1(1-2)	Continuity and differentiability of complex functions
2(4-9)	Analytic functions, Cauchy-Riemann equations.
3(11-16)	Harmonic functions And Test of 3 rd Section
4(18-23)	Fourier's series: Fourier expansion of piecewise monotonic functions, Properties
	of Fourier Co-efficients,
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	conditions, Parseval's identity for Fourier series, Fourier series for even and odd
	functions
2(8-13)	Dirichlet's, Half range series, Change of Intervals
3(15-20)	Mappings by elementary functions: Translation, rotation, Magnification and
	Inversion.
4(22-27)	Conformal Mappings, Mobius transformations. Fixed pints, Cross ratio, Inverse
	Points and critical mappings.
5(29-30)	Test of 2 nd and 4 th Section And Assignment Collection

Teacher ...Dr. Kulvir

Class B.Sc 1st (Hons.)..... Sem. ...2nd.....

Subject ...O.D.E......Session ...2023-24.....

Week(Feb.)	Topics
1 (6-10)	UNIT-1: Geometrical meaning of a differential equation. Exact differential
	equations, integrating factors.
2(12-17)	First order higher degree equations solvable for x,y,p Lagrange's equations,
	Clairaut's equations.
3(19-24)	Equation reducible to Clairaut's form. Singular solutions.
4(26-29)	UNIT-2: Orthogonal trajectories: in Cartesian coordinates and polar
	coordinates. Self orthogonal family of curves. Linear differential equations
	with constant coefficients.

Week(March)	Topics
1(1-2)	Homogeneous linear ordinary differential equations. Equations reducible to
	homogeneous
2(4-9)	Revision; test and assignment of UNIT-1 & UNIT-2
3(11-16)	UNIT-3: Linear differential equations of second order: Reduction to normal
	form. Transformation of the equation by changing the dependent variable/
	the independent variable.
4(18-23)	Solution by operators of non-homogeneous linear differential equations.
	Reduction of order of a differential equation.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Method of variations of parameters. Method of undetermined coefficients.
2(8-13)	UNIT-4: Ordinary simultaneous differential equations. Solution of
	simultaneous differential equations involving operators x (d/dx) or t (d/dt)
	etc.
3(15-20)	Simultaneous equation of the form $dx/P = dy/Q = dz/R$. Total differential
	equations. Condition for $Pdx + Qdy + Rdz = 0$ to be exact.
4(22-27)	General method of solving $Pdx + Qdy + Rdz = 0$ by taking one variable
	constant. Method of auxiliary equations.
5(29-30)	Revision; test and assignment of UNIT-3 & UNIT-4

TeacherDr. Kulvir.....

Class B.Sc 3rd(Hons.)..... Sem. 6th.....

Subject ...Linear Algebra......Session ...2023-24.....

Week(Feb.)	Topics
1 (6-10)	UNIT-1: Vector spaces, subspaces, Sum and Direct sum of subspaces,
	Linear span, Linearly Independent and dependent subsets of a vector space.
	Finitely generated vector space.
2(12-17)	Existence theorem for basis of a finitely generated vactor space, Finite
	dimensional vector spaces.
3(19-24)	Invariance of the number of elements of bases sets, Dimensions, Quotient
	space and its dimension.
4(26-29)	UNIT-2: Homomorphism and isomorphism of vector spaces, Linear
	transformations and linear forms on vactor spaces, Vactor space of all the
	linear transformations.

Week(March)	Topics
1(1-2)	Dual Spaces, Bidual spaces, annihilator of subspaces of finite dimentional
	vactor spaces, Null Space, Range space of a linear transformation, Rank and
	Nullity Theorem,
2(4-9)	Revision; test and assignment of UNIT-1 & UNIT-2
3(11-16)	UNIT-3: Algebra of Liner Transformation, Minimal Polynomial of a linear
	transformation,
4(18-23)	Singular and non-singular linear transformations, Matrix of a linear
	Transformation.
5(25-30)	Holiday of Holi

Week(April)	Topics
1(1-6)	Change of basis, Eigen values and Eigen vectors of linear transformations.
2(8-13)	UNIT-4: Inner product spaces, Cauchy-Schwarz inequality, Orthogonal
	vectors, Orthogonal complements.
3(15-20)	Orthogonal sets and Basis, Bessel's inequality for finite dimensional vector
	spaces, Gram-Schmidt, Orthogonalization process.
4(22-27)	Adjoint of a linear transformation and its properties, Unitary linear
	transformations.
5(29-30)	Revision; test and assignment of UNIT-3 & UNIT-4